1887

Abstract

To assess activities of nine antifungal agents (amphotericin B, fluconazole, voriconazole, itraconazole, posaconazole, caspofungin, micafungin, terbinafine and 5-flucytosine) against 93 strains of rare pathogenic fungi and the combined effects of drug combinations against several multidrug-resistant fungi.

The broth microdilution method M38-A3 and M27-A4 from the Clinical and Laboratory Standards Institute and the checkerboard method were performed in this study.

Low MICs for fluconazole were observed in moulds including and yeasts. MICs for amphotericin B>2 µg ml were found among , , , , , , , , and . Multidrug resistance was observed in spp., and .

Our study illustrated drug susceptibilities of some rare pathogenic fungi, which provide data to guide clinical treatment of fungal infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001083
2019-09-25
2019-10-14
Loading full text...

Full text loading...

References

  1. Zarrinfar H, Kaboli S, Dolatabadi S, Mohammadi R. Rapid detection of Candida species in bronchoalveolar lavage fluid from patients with pulmonary symptoms. Braz J Microbiol 2016;47:172–176 [CrossRef]
    [Google Scholar]
  2. Zanganeh E, Zarrinfar H, Rezaeetalab F, Fata A, Tohidi M et al. Predominance of non-fumigatus Aspergillus species among patients suspected to pulmonary aspergillosis in a tropical and subtropical region of the Middle East. Microb Pathog 2018;116:296–300 [CrossRef]
    [Google Scholar]
  3. Taghizadeh-Armaki M, Hedayati MT, Moqarabzadeh V, Ansari S, Mahdavi Omran S et al. Effect of involved Aspergillus species on galactomannan in bronchoalveolar lavage of patients with invasive aspergillosis. J Med Microbiol 2017;66:898–904 [CrossRef]
    [Google Scholar]
  4. Zarrinfar H, Makimura K, Satoh K, Khodadadi H, Mirhendi H. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients. J Clin Lab Anal 2013;27:181–185 [CrossRef]
    [Google Scholar]
  5. Zarrinfar H, Mirhendi H, Fata A, Khodadadi H, Kordbacheh P. Detection of Aspergillus flavus and A. fumigatus in bronchoalveolar lavage specimens of hematopoietic stem cell transplants and hematological malignancies patients by real-time polymerase chain reaction, nested PCR and mycological assays. Jundishapur J Microbiol 2015;8:e13744 [CrossRef]
    [Google Scholar]
  6. Esmailzadeh A, Zarrinfar H, Fata A, Sen T. High prevalence of candiduria due to non-albicans Candida species among diabetic patients: a matter of concern?. J Clin Lab Anal 2018;32:e22343 [CrossRef]
    [Google Scholar]
  7. Zarrinfar H, Mirhendi H, Makimura K, Satoh K, Khodadadi H et al. Use of mycological, nested PCR, and real-time PCR methods on BAL fluids for detection of Aspergillus fumigatus and A. flavus in solid organ transplant recipients. Mycopathologia 2013;176:377–385 [CrossRef]
    [Google Scholar]
  8. Mohd Nizam T, Binting RAA, Mohd Saari S, Kumar TV, Muhammad M et al. In vitro antifungal activities against moulds isolated from dermatological specimens. Malays J Med Sci 2016;23:32–39
    [Google Scholar]
  9. Pujol I, Guarro J, Llop C, Soler L, Fernández-Ballart J. Comparison study of broth macrodilution and microdilution antifungal susceptibility tests for the filamentous fungi. Antimicrob Agents Chemother 1996;40:2106–2110 [CrossRef]
    [Google Scholar]
  10. Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc 2011;86:805–817 [CrossRef]
    [Google Scholar]
  11. Kobayashi M, Togitani K, Machida H, Uemura Y, Ohtsuki Y et al. Molecular polymerase chain reaction diagnosis of pulmonary mucormycosis caused by Cunninghamella bertholletiae. Respirology 2004;9:397–401 [CrossRef]
    [Google Scholar]
  12. Gang GH, Cho HJ, Kim HS, Kwack YB, Kwak YS. Analysis of fungicide sensitivity and genetic diversity among Colletotrichum species in sweet persimmon. Plant Pathol J 2015;31:115–122 [CrossRef]
    [Google Scholar]
  13. Ropars J, Cruaud C, Lacoste S, Dupont J. A taxonomic and ecological overview of cheese fungi. Int J Food Microbiol 2012;155:199–210 [CrossRef]
    [Google Scholar]
  14. Sandoval-Denis M, Sutton DA, Fothergill AW, Cano-Lira J, Gené J et al. Scopulariopsis, a poorly known opportunistic fungus: spectrum of species in clinical samples and in vitro responses to antifungal drugs. J Clin Microbiol 2013;51:3937–3943 [CrossRef]
    [Google Scholar]
  15. Azor M, Gené J, *Cano J, Manikandan P, Venkatapathy N et al. Less-frequent Fusarium species of clinical interest: correlation between morphological and molecular identification and antifungal susceptibility. J Clin Microbiol 2009;47:1463–1468 [CrossRef]
    [Google Scholar]
  16. CLSI 2017 Reference method for broth dilution antifungal susceptibility testing of yeasts CLSI Standard M27, 4th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017
    [Google Scholar]
  17. CLSI 2017 Reference method for broth dilution antifungal susceptibility testing of filamentous fungi CLSI Standard M38, 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017
    [Google Scholar]
  18. Naseri A, Fata A, Najafzadeh MJ. First case of Tritirachium oryzae as agent of onychomycosis and its susceptibility to antifungal drugs. Mycopathologia 2013;176:119–122 [CrossRef]
    [Google Scholar]
  19. de Souza M, Matsuzawa T, Lyra L, Busso-Lopes AF, Gonoi T et al. Fusarium napiforme systemic infection: case report with molecular characterization and antifungal susceptibility tests. Springerplus 2014;3:492 [CrossRef]
    [Google Scholar]
  20. Melcher GP, McGough DA, Fothergill AW, Norris C, Rinaldi MG. Disseminated hyalohyphomycosis caused by a novel human pathogen, Fusarium napiforme. J Clin Microbiol 1993;31:1461–1467
    [Google Scholar]
  21. Rothe A, Seibold M, Hoppe T, Seifert H, Engert A et al. Combination therapy of disseminated Fusarium oxysporum infection with terbinafine and amphotericin B. Ann Hematol 2004;83:394–397 [CrossRef]
    [Google Scholar]
  22. Ruíz-Cendoya M, Pastor FJ, Capilla J, Guarro J. Treatment of murine Fusarium verticillioides infection with liposomal amphotericin B plus terbinafine. Int J Antimicrob Agents 2011;37:58–61 [CrossRef]
    [Google Scholar]
  23. Espinel-Ingroff A, Colombo AL, Cordoba S, Dufresne PJ, Fuller J et al. International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the clsi broth microdilution method. Antimicrob Agents Chemother 2016;60:1079–1084 [CrossRef]
    [Google Scholar]
  24. Alastruey-Izquierdo A, Cuesta I, Ros L, Mellado E, Rodriguez-Tudela JL et al. Antifungal susceptibility profile of clinical Alternaria spp. identified by molecular methods. J Antimicrob Chemother 2011;66:2585–2587 [CrossRef]
    [Google Scholar]
  25. Deng S, de Hoog GS, Badali H, Yang L, Najafzadeh MJ et al. In vitro antifungal susceptibility of Cladophialophora carrionii, an agent of human chromoblastomycosis. Antimicrob Agents Chemother 2013;57:1974–1977 [CrossRef]
    [Google Scholar]
  26. Duarte APM, Pagnocca FC, Baron NC, Melhem MdeSC, Palmeira GA et al. In vitro susceptibility of environmental isolates of Exophiala dermatitidis to five antifungal drugs. Mycopathologia 2013;175:455–461 [CrossRef]
    [Google Scholar]
  27. Chowdhary A, Hagen F, Curfs-Breuker I, Madrid H, de Hoog GS et al. In vitro activities of eight antifungal drugs against a global collection of genotyped Exserohilum isolates. Antimicrob Agents Chemother 2015;59:6642–6645 [CrossRef]
    [Google Scholar]
  28. da Cunha KC, Sutton DA, Gené J, Capilla J, Cano J et al. Molecular identification and in vitro response to antifungal drugs of clinical isolates of Exserohilum. Antimicrob Agents Chemother 2012;56:4951–4954 [CrossRef]
    [Google Scholar]
  29. Najafzadeh MJ, Badali H, Illnait-Zaragozi MT, De Hoog GS, Meis JF et al. In vitro activities of eight antifungal drugs against 55 clinical isolates of Fonsecaea spp. Antimicrob Agents Chemother 2010;54:1636–1638 [CrossRef]
    [Google Scholar]
  30. Shi D, Lu G, Mei H, de Hoog GS, Samerpitak K et al. Subcutaneous infection by Ochroconis mirabilis in an immunocompetent patient. Med Mycol Case Rep 2016;11:44–47 [CrossRef]
    [Google Scholar]
  31. Seyedmousavi S, Samerpitak K, Rijs AJMM, Melchers WJG, Mouton JW et al. Antifungal susceptibility patterns of opportunistic fungi in the genera Verruconis and Ochroconis. Antimicrob Agents Chemother 2014;58:3285–3292 [CrossRef]
    [Google Scholar]
  32. Liu M, Xin X, Li J, Chen S. The first case of endophthalmitis due to Rhinocladiella basitona in an immunocompetent patient. Diagn Microbiol Infect Dis 2015;83:49–52 [CrossRef]
    [Google Scholar]
  33. Heidrich D, González GM, Pagani DM, Ramírez-Castrillón M, Scroferneker ML et al. Chromoblastomycosis caused by Rhinocladiella similis: Case report. Med Mycol Case Rep 2017;16:25–27 [CrossRef]
    [Google Scholar]
  34. Yu J, Mu X, Li R. Invasive pulmonary aspergillosis due to Emericella nidulans var. echinulata, successfully cured by voriconazole and micafungin. J Clin Microbiol 2013;51:1327–1329 [CrossRef]
    [Google Scholar]
  35. Ishiwada N, Takeshita K, Yaguchi T, Nagasawa K, Takeuchi N et al. The first case of invasive mixed-mold infections due to Emericella nidulans var. echinulata and Rasamsonia piperina in a patient with chronic granulomatous disease. Mycopathologia 2016;181:305–309 [CrossRef]
    [Google Scholar]
  36. Espinel-Ingroff A, Cuenca-Estrella M, Fothergill A, Fuller J, Ghannoum M et al. Wild-type MIC distributions and epidemiological cutoff values for amphotericin B and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). Antimicrob Agents Chemother 2011;55:5150–5154 [CrossRef]
    [Google Scholar]
  37. Espinel-Ingroff A, Diekema DJ, Fothergill A, Johnson E, Pelaez T et al. Wild-Type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J Clin Microbiol 2010;48:3251–3257 [CrossRef]
    [Google Scholar]
  38. Espinel-Ingroff A, Fothergill A, Fuller J, Johnson E, Pelaez T et al. Wild-type MIC distributions and epidemiological cutoff values for caspofungin and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). Antimicrob Agents Chemother 2011;55:2855–2859 [CrossRef]
    [Google Scholar]
  39. Perdomo H, Sutton DA, García D, Fothergill AW, Gené J et al. Molecular and phenotypic characterization of Phialemonium and Lecythophora isolates from clinical samples. J Clin Microbiol 2011;49:1209–1216 [CrossRef]
    [Google Scholar]
  40. Kratzer C, Tobudic S, Schmoll M, Graninger W, Georgopoulos A et al. In vitro activity and synergism of amphotericin B, azoles and cationic antimicrobials against the emerging pathogen Trichoderma spp. J Antimicrob Chemother 2006;58:1058–1061 [CrossRef]
    [Google Scholar]
  41. Zhang S, Li R, Yu J. Drug combinations against Mucor irregularis in vitro. Antimicrob Agents Chemother 2013;57:3395–3397 [CrossRef]
    [Google Scholar]
  42. Sun L, Wan Z, Li R, Yu J. In vitro activities of six antifungal agents and their combinations against Chaetomium spp. J Med Microbiol 2019;68:1042–1046 [CrossRef]
    [Google Scholar]
  43. Odero V, García-Agudo L, Guerrero I, Aznar P, García-Martos P et al. [Antifungal susceptibility of clinical isolates of Scopulariopsis species]. Rev Esp Quimioter 2014;27:17–21
    [Google Scholar]
  44. Lackner M, de Hoog GS, Verweij PE, Najafzadeh MJ, Curfs-Breuker I et al. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother 2012;56:2635–2642 [CrossRef]
    [Google Scholar]
  45. Loreto ES, Tondolo JSM, Pilotto MB, Alves SH, Santurio JM et al. New insights into the in vitro susceptibility of Pythium insidiosum. Antimicrob Agents Chemother 2014;58:7534–7537 [CrossRef]
    [Google Scholar]
  46. Pastor FJ, Ruíz-Cendoya M, Pujol I, Mayayo E, Sutton DA et al. In vitro and in vivo antifungal susceptibilities of the Mucoralean fungus Cunninghamella. Antimicrob Agents Chemother 2010;54:4550–4555 [CrossRef]
    [Google Scholar]
  47. Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S et al. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J Clin Microbiol 2012;50:66–75 [CrossRef]
    [Google Scholar]
  48. Nayak DR, Pillai S, Rao L. Rhinofacial zygomycosis caused by Conidiobolus coronatus. Indian J Otolaryngol Head Neck Surg 2004;56:225–227 [CrossRef]
    [Google Scholar]
  49. Bento DP, Tavares R, Martins MDL, Faria N, Maduro AP et al. Atypical presentation of entomophthoromycosis caused by Conidiobolus coronatus. Med Mycol 2010;48:1099–1104 [CrossRef]
    [Google Scholar]
  50. John D, Irodi A, Michael JS. Concurrent infections of Conidiobolus Coronatus with disseminated tuberculosis presenting as bilateral orbital cellulitis. J Clin Diagn Res 2016;10:ND01–02 [CrossRef]
    [Google Scholar]
  51. Feng P, Yin S, Zhu G, Li M, Wu B et al. Disseminated infection caused by Emmonsia pasteuriana in a renal transplant recipient. J Dermatol 2015;42:1179–1182 [CrossRef]
    [Google Scholar]
  52. Malik R, Capoor MR, Vanidassane I, Gogna A, Singh A et al. Disseminated Emmonsia pasteuriana infection in India: a case report and a review. Mycoses 2016;59:127–132 [CrossRef]
    [Google Scholar]
  53. Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clinical Infectious Diseases 1997;24:235–247 [CrossRef]
    [Google Scholar]
  54. Lockhart SR, Ghannoum MA, Alexander BD. Establishment and use of epidemiological cutoff values for molds and yeasts by use of the clinical and laboratory Standards Institute M57 standard. J Clin Microbiol 2017;55:1262–1268 [CrossRef]
    [Google Scholar]
  55. Espinel-Ingroff A, Abreu DPB, Almeida-Paes R, Brilhante RSN, Chakrabarti A et al. Multicenter, international study of MIC/MEC distributions for definition of epidemiological cutoff values for Sporothrix species identified by molecular methods. Antimicrob Agents Chemother 2017;61:e01057–17 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001083
Loading
/content/journal/jmm/10.1099/jmm.0.001083
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error