1887

Abstract

is an anthropophilic dermatophyte species, which is one of the common causative agents of dermatophytosis in different parts of the world. The aim of the present investigation was to evaluate the genetic diversity of strains isolated from different parts of Iran and to define the susceptibility profiles of seven antifungal drugs against these clinical isolates.

Forty clinical strains of isolated from 40 patients with dermatophytosis were subjected to DNA extraction and PCR amplification of the ITS rDNA region using universal primers ITS1 and ITS4. The activities of griseofulvin, itraconazole, voriconazole, posaconazole, caspofungin, ketoconazole and terbinafine were determined using a broth microdilution method according to the CLSI-M-38A2 protocol.

A mean genetic similarity of 99.5 % was found between strains, with intraspecies differences ranging from 0 to 3 nt. The geometric mean (GM) MICs and minimum effective concentrations (MECs) across all isolates were, in increasing order, as follows: terbinafine (GM=0.018 mg l), posaconazole (GM=0.022 mg l), itraconazole (GM=0.034 mg l) and voriconazole (GM=0.045 mg l), which had low MICs against all tested strains, whereas caspofungin (GM=0.22 mg l), ketoconazole (GM=0.41 mg l) and griseofulvin (GM=0.62 mg l) demonstrated higher MICs.

Our study showed low intraspecies variation within strains of . Furthermore, terbinafine, posaconazole, itraconazole and voriconazole were shown to be the most potent antifungal drugs against strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001074
2019-10-01
2019-10-13
Loading full text...

Full text loading...

References

  1. de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 2017;182:5–31 [CrossRef]
    [Google Scholar]
  2. OC H. Einige neue Hyphomyceten Berlins und Wiens nebst Beiträgen zur Systematik derselben" (in German). Bulletin de la Société Impériale des Naturalistes de Moscou 1871;44:88–147
    [Google Scholar]
  3. Rippon J. Pathogenic fungi and the pathogenic actinomycetes. Medical mycology 1988;226–229
    [Google Scholar]
  4. Kane J, Summerbell R, Sigler L, Krajden S, Land G. Laboratory Handbook of dermatophytes. A clinical guide and laboratory manual of dermatophytes and other filamentous fungi from skin, hair and nails. Belmont: Star 1997;313–331
    [Google Scholar]
  5. Rinaldi MG. Dermatophytosis: epidemiological and microbiological update. J Am Acad Dermatol 2000;43:S120–S124 [CrossRef]
    [Google Scholar]
  6. Aghamirian MR, Ghiasian SA. Dermatophytoses in outpatients attending the dermatology center of Avicenna hospital in Qazvin, Iran. Mycoses 2008;51:155–160 [CrossRef]
    [Google Scholar]
  7. Ansari S, Hedayati MT, Zomorodian K, Pakshir K, Badali H et al. Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran. Mycopathologia 2016;181:89–95 [CrossRef]
    [Google Scholar]
  8. Ghojoghi A, Falahati M, Abastabar M, Ghasemi Z, Ansari S et al. Molecular identification and epidemiological aspects of dermatophytosis in Tehran, Iran. Research in Molecular Medicine 2015;3:11–16
    [Google Scholar]
  9. Pakshir K, Hashemi J, Dermatophytosis in Karaj I. Dermatophytosis in Karaj, Iran. Indian J Dermatol 2006;51:262 [CrossRef]
    [Google Scholar]
  10. Sepahvand A, Abdi J, Shirkhani Y, Fallahi S, Tarrahi M et al. Dermatophytosis in Western part of Iran, Khorramabad. Asian J. of Biological Sciences 2009;2:58–65 [CrossRef]
    [Google Scholar]
  11. Seddon ME, Thomas MG. Invasive disease due to Epidermophyton floccosum in an immunocompromised patient with Behçet's syndrome. Clin Infect Dis 1997;25:153–154 [CrossRef]
    [Google Scholar]
  12. Rouzaud C, Chosidow O, Brocard A, Fraitag S, Scemla A et al. Severe dermatophytosis in solid organ transplant recipients: a French retrospective series and literature review. Transplant Infectious Disease 2018;20:e12799 [CrossRef]
    [Google Scholar]
  13. Liu D, Pearce L, Lilley G, Coloe S, Baird R et al. PCR identification of dermatophyte fungi Trichophyton rubrum, T. soudanense and T. gourvilii. J Med Microbiol 2002;51:117–122 [CrossRef]
    [Google Scholar]
  14. Brillowska-Dąbrowska A, Saunte DM, Arendrup MC. Five-hour diagnosis of dermatophyte nail infections with specific detection of Trichophyton rubrum. J Clin Microbiol 2007;45:1200–1204 [CrossRef]
    [Google Scholar]
  15. Rezaei-Matehkolaei A, Makimura K, de Hoog S, Shidfar MR, Zaini F et al. Molecular epidemiology of dermatophytosis in Tehran, Iran, a clinical and microbial survey. Med Mycol 2013;51:203–207 [CrossRef]
    [Google Scholar]
  16. Hryncewicz-Gwóźdź A, Jagielski T, Sadakierska-Chudy A, Dyląg M, Pawlik K et al. Molecular typing of Trichophyton rubrum clinical isolates from Poland. Mycoses 2011;54:e726–e736 [CrossRef]
    [Google Scholar]
  17. Leibner-Ciszak J, Dobrowolska A, Krawczyk B, Kaszuba A, Stączek P. Evaluation of a PCR melting profile method for intraspecies differentiation of Trichophyton rubrum and Trichophyton interdigitale. J Med Microbiol 2010;59:185–192 [CrossRef]
    [Google Scholar]
  18. Yang G, An L, Li Q, Lin J, Liu W et al. Genotyping of Trichophyton rubrum by analysis of ribosomal-DNA intergenic spacer regions. Mycopathologia 2007;164:19–25 [CrossRef]
    [Google Scholar]
  19. Bishnoi A, Vinay K, Dogra S. Emergence of recalcitrant dermatophytosis in India. Lancet Infect Dis 2018;18:250–251 [CrossRef]
    [Google Scholar]
  20. Yamada T, Maeda M, Alshahni MM, Tanaka R, Yaguchi T et al. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob Agents Chemother 2017;61:e00115–00117 [CrossRef]
    [Google Scholar]
  21. Campoy S, Adrio JL, Antifungals AJL. Antifungals. Biochem Pharmacol 2017;133:86–96 [CrossRef]
    [Google Scholar]
  22. Segato F, Nozawa SR, Rossi A, Martinez-Rossi NM. Over-expression of genes coding for proline oxidase, riboflavin kinase, cytochrome c oxidase and an MFS transporter induced by acriflavin in Trichophyton rubrum. Med Mycol 2008;46:135–139 [CrossRef]
    [Google Scholar]
  23. Persinoti GF, de Aguiar Peres NT, Jacob TR, Rossi A, Vêncio RZ et al. Rna-Sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics 2014;15 Suppl 7:S1 [CrossRef]
    [Google Scholar]
  24. Xiong J, Feng J, Yuan D, Zhou J, Miao W. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci Rep 2015;5:16724 [CrossRef]
    [Google Scholar]
  25. Martinez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia 2008;166:369383 [CrossRef]
    [Google Scholar]
  26. Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV et al. Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front Microbiol 2018;9:1108 [CrossRef]
    [Google Scholar]
  27. Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia 2008;166:353–367 [CrossRef]
    [Google Scholar]
  28. Rezaei-Matehkolaei A, Makimura K, Shidfar M, Zaini F, Eshraghian M et al. Use of single-enzyme PCR-restriction digestion barcode targeting the internal transcribed spacers (its rDNA) to identify dermatophyte species. Iran J Public Health 2012;41:82
    [Google Scholar]
  29. Makimura K, Tamura Y, Mochizuki T, Hasegawa A, Tajiri Y et al. Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol 1999;37:920–924
    [Google Scholar]
  30. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 1990;18:315–322
    [Google Scholar]
  31. CLSI Reference method for broth dilution antifungal susceptibilitytesting of filamentous Fungi; Approved standard, 2nd edition. Wane: Clinical and laboratory Standards Institute; 2008
    [Google Scholar]
  32. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008;51 Suppl 4:2–15 [CrossRef]
    [Google Scholar]
  33. Khosravi A, Aghamirian M, Mahmoudi M. Dermatophytoses in Iran: Dermatophytosen in Iran. Mycoses 1994;37:43–48
    [Google Scholar]
  34. Falahati M, Akhlaghi L, Lari AR, Alaghehbandan R. Epidemiology of dermatophytoses in an area South of Tehran, Iran. Mycopathologia 2003;156:279–287 [CrossRef]
    [Google Scholar]
  35. Abastabar M, Rezaei-Matehkolaei A, Shidfar MR, Kordbacheh P, Mohammadi R et al. A molecular epidemiological survey of clinically important dermatophytes in Iran based on specific RFLP profiles of beta-tubulin gene. Iran J Public Health 2013;42:1049
    [Google Scholar]
  36. Mahmoudabadi AZ. A study of dermatophytosis in South West of Iran (Ahwaz). Mycopathologia 2005;160:21–24 [CrossRef]
    [Google Scholar]
  37. Kanbe T. Molecular approaches in the diagnosis of dermatophytosis. Mycopathologia 2008;166:307–317 [CrossRef]
    [Google Scholar]
  38. Faggi E, Pini G, Campisi E, Bertellini C, Difonzo E et al. Application of PCR to distinguish common species of dermatophytes. J Clin Microbiol 2001;39:3382–3385 [CrossRef]
    [Google Scholar]
  39. Arunmozhi Balajee S, Sigler L, Brandt ME. Dna and the classical way: identification of medically important molds in the 21st century. Med Mycol 2007;45:475–490 [CrossRef]
    [Google Scholar]
  40. Arabatzis M, Bruijnesteijn van Coppenraet LES, Kuijper EJ, de Hoog GS, Lavrijsen APM et al. Diagnosis of common dermatophyte infections by a novel multiplex real-time polymerase chain reaction detection/identification scheme. Br J Dermatol 2007;157:681–689 [CrossRef]
    [Google Scholar]
  41. Gräser Y, El Fari M, Vilgalys R, Kuijpers AF, De Hoog GS et al. Phylogeny and taxonomy of the family Arthrodermataceae (dermatophytes) using sequence analysis of the ribosomal ITS region. Med Mycol 1999;37:105–114 [CrossRef]
    [Google Scholar]
  42. Mochizuki T, Tanabe H, Kawasaki M, Ishizaki H, Jackson CJ. Rapid identification of Trichophyton tonsurans by PCR-RFLP analysis of ribosomal DNA regions. J Dermatol Sci 2003;32:25–32 [CrossRef]
    [Google Scholar]
  43. Jackson CJ, Barton RC, Evans EG. Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. J Clin Microbiol 1999;37:931–936
    [Google Scholar]
  44. Kanbe T, Suzuki Y, Kamiya A, Mochizuki T, Kawasaki M et al. Species-identification of dermatophytes Trichophyton, Microsporum and Epidermophyton by PCR and PCR-RFLP targeting of the DNA topoisomerase II genes. J Dermatol Sci 2003;33:41–54 [CrossRef]
    [Google Scholar]
  45. Hirai A, Kano R, Nakamura Y, Watanabe S, Hasegawa A. Molecular taxonomy of dermatophytes and related fungi by chitin synthase 1 (CHS1) gene sequences. Antonie van Leeuwenhoek 2003;83:11–20 [CrossRef]
    [Google Scholar]
  46. Kamiya A, Kikuchi A, Tomita Y, Kanbe T. Pcr and PCR-RFLP techniques targeting the DNA topoisomerase II gene for rapid clinical diagnosis of the etiologic agent of dermatophytosis. J Dermatol Sci 2004;34:35–48 [CrossRef]
    [Google Scholar]
  47. Rezaei-Matehkolaei A, Mirhendi H, Makimura K, de Hoog GS, Satoh K et al. Nucleotide sequence analysis of beta tubulin gene in a wide range of dermatophytes. Med Mycol 2014;52:674–688 [CrossRef]
    [Google Scholar]
  48. Mirhendi H, Makimura K, de Hoog GS, Rezaei-Matehkolaei A, Najafzadeh MJ et al. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Med Mycol 2015;53:215–224 [CrossRef]
    [Google Scholar]
  49. Ahmadi B, Mirhendi H, Makimura K, de Hoog GS, Shidfar MR et al. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene. Med Mycol 2016;54:500–514 [CrossRef]
    [Google Scholar]
  50. Gaedigk A, Gaedigk R, Abdel-Rahman SM. Genetic heterogeneity in the rRNA gene locus of Trichophyton tonsurans. J Clin Microbiol 2003;41:5478–5487 [CrossRef]
    [Google Scholar]
  51. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M et al. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database--the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 2015;53:313–337 [CrossRef]
    [Google Scholar]
  52. Khosravi A, Behzad F, Sabokbar A, Shokri H, Haddadi S et al. Molecular typing of Epidermophyton floccosum isolated from patients with dermatophytosis by RAPD-PCR. J Basic Microbiol 2010;50 Suppl 1:S68–S73 [CrossRef]
    [Google Scholar]
  53. Kano R, Nakamura Y, Watanabe S, Tsujimoto H, Hasegawa A. Phylogenetic relation of Epidermophyton floccosum to the species of Microsporum and Trichophyton in chitin synthase 1 (CHS1) gene sequences. Mycopathologia 1999;146:111–113 [CrossRef]
    [Google Scholar]
  54. Santos DA, Barros MES, Hamdan JS, DdA S, MEdS B. Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J Clin Microbiol 2006;44:98–101 [CrossRef]
    [Google Scholar]
  55. Carrillo-Muñoz AJ, Quindós G, Ruesga M, del Valle O, Pemán J et al. In vitro antifungal susceptibility testing of filamentous fungi with Sensititre yeast one. Mycoses 2006;49:293–297 [CrossRef]
    [Google Scholar]
  56. Yenişehirli G, Tunçoğlu E, Yenişehirli A, Bulut Y. In vitro activities of antifungal drugs against dermatophytes isolated in Tokat, Turkey. Int J Dermatol 2013;52:1557–1560 [CrossRef]
    [Google Scholar]
  57. Badali H, Mohammadi R, Mashedi O, de Hoog GS, Meis JF. In vitro susceptibility patterns of clinically important Trichophyton and Epidermophyton species against nine antifungal drugs. Mycoses 2015;58:303–307 [CrossRef]
    [Google Scholar]
  58. Fernández-Torres B, Cabañes FJ, Carrillo-Muñoz AJ, Esteban A, Inza I et al. Collaborative evaluation of optimal antifungal susceptibility testing conditions for dermatophytes. J Clin Microbiol 2002;40:3999–4003 [CrossRef]
    [Google Scholar]
  59. Fernández-Torres B, Carrillo AJ, Martín E, Del Palacio A, Moore MK et al. In vitro activities of 10 antifungal drugs against 508 dermatophyte strains. Antimicrob Agents Chemother 2001;45:2524–2528 [CrossRef]
    [Google Scholar]
  60. Adimi P, Hashemi SJ, Mahmoudi M, Mirhendi H, Shidfar MR et al. In-Vitro activity of 10 antifungal agents against 320 dermatophyte strains using microdilution method in Tehran. Iran J Pharm Res 2013;12:537
    [Google Scholar]
  61. Babu PR, Pravin AJS, Deshmukh G, Dhoot D, Samant A et al. Efficacy and safety of terbinafine 500 Mg once daily in patients with dermatophytosis. Indian J Dermatol 2017;62:395 [CrossRef]
    [Google Scholar]
  62. Torres HA, Hachem RY, Chemaly RF, Kontoyiannis DP, Raad II. Posaconazole: a broad-spectrum triazole antifungal. Lancet Infect Dis 2005;5:775–785 [CrossRef]
    [Google Scholar]
  63. Morris MI, Villmann M. Echinocandins in the management of invasive fungal infections, part 1. Am J Health Syst Pharm 2006;63:1693–1703 [CrossRef]
    [Google Scholar]
  64. Artis WM, Odle BM, Jones HE. Griseofulvin-resistant dermatophytosis correlates with in vitro resistance. Arch Dermatol 1981;117:16–19 [CrossRef]
    [Google Scholar]
  65. Korting HC, Rosenkranz S. In vitro susceptibility of dermatophytes from Munich to griseofulvin, miconazole and ketoconazole. Mycoses 1990;33:136–139 [CrossRef]
    [Google Scholar]
  66. Chadeganipour M, Nilipour S, Havaei A. In vitro evaluation of griseofulvin against clinical isolates of dermatophytes from Isfahan. Mycoses 2004;47:503–507 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001074
Loading
/content/journal/jmm/10.1099/jmm.0.001074
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error