1887

Abstract

is an obligate intracellular pathogen that causes the zoonotic disease Q fever in humans, which can occur in either an acute or a chronic form with serious complications. The bacterium has a wide host range, including unicellular organisms, invertebrates, birds and mammals, with livestock representing the most significant reservoir for human infections. Cell culture models have been used to decipher the intracellular lifestyle of , and several infection models, including invertebrates, rodents and non-human primates, are being used to investigate host–pathogen interactions and to identify bacterial virulence factors and vaccine candidates. However, none of the models replicate all aspects of human disease. Furthermore, it is becoming evident that isolates belonging to different lineages exhibit differences in their virulence in these models. Here, we compare the advantages and disadvantages of commonly used infection models and summarize currently available data for lineage-specific virulence.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001064
2019-08-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/10/1419.html?itemId=/content/journal/jmm/10.1099/jmm.0.001064&mimeType=html&fmt=ahah

References

  1. Million M, Raoult D. Recent advances in the study of Q fever epidemiology, diagnosis and management. J Infect 2015; 71:S2–S9 [View Article]
    [Google Scholar]
  2. Honarmand H. Q Fever: An Old but Still a Poorly Understood Disease. Interdiscip Perspect Infect Dis 2012; ID:
    [Google Scholar]
  3. Maurin M, Raoult D. Q fever. Clin Microbiol Rev 1999; 12:518–553 [View Article]
    [Google Scholar]
  4. Pexara A, Solomakos N, Govaris A. A review on the seroprevalence of Coxiella burnetii in farm ruminants in various countries. Vet Ital 2018; 54:1113
    [Google Scholar]
  5. Karagiannis I, Schimmer B, Van Lier A, Timen A, Schneeberger P et al. Investigation of a Q fever outbreak in a rural area of the Netherlands. Epidemiol Infect 2009; 137:1283–1294 [View Article]
    [Google Scholar]
  6. Anderson AD, Bijlmer HA, Fournier PE, Graves SE, Hartzell JD et al. Diagnosis and management of Q fever-United states, 2013: recommendations from CDC and the Q fever Working group. MMWR 2013; 62 RR-03:1–30
    [Google Scholar]
  7. Palmer NC, Kierstead M, Key DW, Williams JC, Peacock MG et al. Placentitis and Abortion in Goats and Sheep in Ontario Caused by Coxiella burnetii . Can Vet J 1983; 24:60–61
    [Google Scholar]
  8. Angelakis E, Raoult D. Q fever. Vet Microbiol 2010; 140:297–309 [View Article]
    [Google Scholar]
  9. Ackland JR, Worswick DA, Marmion BP. Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-Vax (CSL) 1985-1990. Med J Aust 1994; 160:704–708
    [Google Scholar]
  10. Bond KA, Franklin LJ, Sutton B, Firestone SM. Q-Vax Q fever vaccine failures, Victoria, Australia 1994-2013. Vaccine 2017; 35:7084–7087 [View Article]
    [Google Scholar]
  11. Moos A, Hackstadt T. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun 1987; 55:1144–1150
    [Google Scholar]
  12. Shannon JG, Howe D, Heinzen RA. Virulent Coxiella Burnetii Does Not Activate Human Dendritic Cells: Role of Lipopolysaccharide as a Shielding Molecule 102 USA: Proc Nat Acad Sci; 2005 p 8722
    [Google Scholar]
  13. Hotta A, Kawamura M, To H, Andoh M, Yamaguchi T et al. Phase variation analysis of Coxiella burnetii during serial passage in cell culture by use of monoclonal antibodies. Infect Immun 2002; 70:4747–4749 [View Article]
    [Google Scholar]
  14. Narasaki CT, Toman R. Lipopolysaccharide of Coxiella burnetii . In Toman R, Heinzen RA, Samuel JE, Mege J-L. (editors) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium Dordrecht: Springer Netherlands: 2012 pp 65–90
    [Google Scholar]
  15. Beare PA, Jeffrey BM, Long CM, Martens CM, Heinzen RA. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathog 2018; 14:e1006922 [View Article]
    [Google Scholar]
  16. Millar JA, Beare PA, Moses AS, Martens CA, Heinzen RA et al. Whole-Genome Sequence of Coxiella burnetii Nine Mile RSA439 (Phase II, Clone 4), a Laboratory Workhorse Strain. Genome Announc 2017; 5:e00471–00417 [View Article]
    [Google Scholar]
  17. Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii . Proc Natl Acad Sci USA 2003; 100:5455–5460 [View Article]
    [Google Scholar]
  18. Carey KL, Newton HJ, Lührmann A, Roy CR. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog 2011; 7:e1002056 [View Article]
    [Google Scholar]
  19. Zamboni DS, McGrath S, Rabinovitch M, Roy CR. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 2003; 49:965–976 [View Article]
    [Google Scholar]
  20. Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 2008; 320:1651–1654 [View Article]
    [Google Scholar]
  21. Crabill E, Schofield WB, Newton HJ, Goodman AL, Roy CR. Dot/Icm-Translocated proteins important for biogenesis of the Coxiella burnetii-Containing vacuole identified by screening of an effector mutant Sublibrary. Infect Immun 2018; 86:e00758–00717 [View Article]
    [Google Scholar]
  22. Beare PA, Gilk SD, Larson CL, Hill J, Stead CM et al. Dot/Icm type IVb secretion system requirements for Coxiella burnetii growth in human macrophages. MBio 2011; 2:e00175–00111 [View Article]
    [Google Scholar]
  23. Martinez E, Cantet F, Fava L, Norville I, Bonazzi M. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog 2014; 10:e1004013 [View Article]
    [Google Scholar]
  24. Newton HJ, Roy CR. The Coxiella burnetii Dot/Icm system creates a comfortable home through lysosomal renovation. MBio 2011; 2:e00226–00211 [View Article]
    [Google Scholar]
  25. van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii . Nat Rev Microbiol 2013; 11:561–573 [View Article]
    [Google Scholar]
  26. Shannon JG, Heinzen RA. Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii . Immunol Res 2009; 43:138–148 [View Article]
    [Google Scholar]
  27. Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M et al. From Q Fever to Coxiella burnetii Infection: a Paradigm Change. Clin Microbiol Rev 2017; 30:115–190 [View Article]
    [Google Scholar]
  28. Amara AB, Bechah Y, Mege J-L. Immune response and Coxiella burnetii invasion. In Toman R, Heinzen RA, Samuel JE, Mege J-L. (editors) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium Dordrecht: Springer Netherlands; 2012 pp 287–298
    [Google Scholar]
  29. Fenollar F, Fournier PE, Carrieri MP, Habib G, Messana T et al. Risks factors and prevention of Q fever endocarditis. Clin Infect Dis 2001; 33:312–316 [View Article]
    [Google Scholar]
  30. Boschini A, Di Perri G, Legnani D, Fabbri P, Ballarini P et al. Consecutive epidemics of Q fever in a residential facility for drug abusers: impact on persons with human immunodeficiency virus infection. Clin Infect Dis 1999; 28:866–872 [View Article]
    [Google Scholar]
  31. Derrick EH. " Q " fever, a new fever entity : clinical features, diagnosis and laboratory investigation. Med J Aust 1937; 2:281–299
    [Google Scholar]
  32. Burnet FM, Freeman M. Experimental studies on the virus of " Q " fever. Med J Aust 1937; 2:299–305
    [Google Scholar]
  33. Duron O, Noël V, McCoy KD, Bonazzi M, Sidi-Boumedine K et al. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the q fever pathogen, Coxiella burnetii . PLoS Pathog 2015; 11:e1004892 [View Article]
    [Google Scholar]
  34. Robbins FC, Rustigian R, Snyder MJ, Smadel JE. Q fever in the Mediterranean area: report of its occurrence in allied troops. Part III: etiological agent. Am J Epidemiol 1946; 44:51–63
    [Google Scholar]
  35. Topping NH, Shepard CC, Huebner RJ. Q fever; an immunological comparison of strains. Am J Epidemiol 1946; 44:173–182
    [Google Scholar]
  36. Stoker M. Q fever in great britain the causative agent. The Lancet 1950; 256:616–620 [View Article]
    [Google Scholar]
  37. Stoenner HG, Lackman DB. The biologic properties of Coxiella burnetii isolated from rodents collected in Utah. Am J Hyg 1960; 71:45–51
    [Google Scholar]
  38. Burnet FM, Feeeman M. A comparative study of rickettsial strains from an infection of ticks in montana (united states of america) and from “Q” fever. Med J Aust 1939; 2:887–891 [View Article]
    [Google Scholar]
  39. Hackstadt T. Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect Immun 1986; 52:337–340
    [Google Scholar]
  40. To H, Hotta A, Yamaguchi T, Fukushi H, Hirai K. Antigenic characteristic of the lipopolysaccharides of Coxiella burnetii isolates. J Vet Med Sci 1998; 60:267–270 [View Article]
    [Google Scholar]
  41. Yu X, Raoult D. Serotyping Coxiella burnetii isolates from acute and chronic Q fever patients by using monoclonal antibodies. FEMS Microbiol Lett 1994; 117:15–19 [View Article]
    [Google Scholar]
  42. Sekeyová Z, Thiele D, Krauss H, Karo M, Kazár J. Monoclonal antibody based differentiation of Coxiella burnetii isolates. Acta Virol 1996; 40:127–132
    [Google Scholar]
  43. Hendrix LR, Samuel JE, Mallavia LP. Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. Microbiology 1991; 137:269–276
    [Google Scholar]
  44. Piñero A, Barandika JF, García-Pérez AL, Hurtado A. Genetic diversity and variation over time of Coxiella burnetii genotypes in dairy cattle and the farm environment. Infect Genet Evol 2015; 31:231–235 [View Article]
    [Google Scholar]
  45. Hornstra HM, Priestley RA, Georgia SM, Kachur S, Birdsell DN et al. Rapid typing of Coxiella burnetii . PLoS One 2011; 6:e26201 [View Article]
    [Google Scholar]
  46. Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF et al. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 2006; 188:2309–2324 [View Article]
    [Google Scholar]
  47. Vincent G, Stenos J, Latham J, Fenwick S, Graves S. Novel genotypes of Coxiella burnetii identified in isolates from Australian Q fever patients. Int J Med Microbiol 2016; 306:463–470 [View Article]
    [Google Scholar]
  48. Thiele D, Willems H, Haas M, Krauss H. Analysis of the entire nucleotide sequence of the cryptic plasmid QpH1 from Coxiella burnetti . Eur J Epidemiol 1994; 10:413–420 [View Article]
    [Google Scholar]
  49. Valková D, Kazár J. A new plasmid (QpDV) common to Coxiella burnetii isolates associated with acute and chronic Q fever. FEMS Microbiol Lett 1995; 125:275–280 [View Article]
    [Google Scholar]
  50. Heinzen R, Stiegler GL, Whiting LL, Schmitt SA, Mallavia LP et al. Use of pulsed field gel electrophoresis to differentiate Coxiella burnetii strains. Ann N Y Acad Sci 1990; 590:504–513 [View Article]
    [Google Scholar]
  51. Willems H, Ritter M, Jäger C, Thiele D. Plasmid-homologous sequences in the chromosome of plasmidless Coxiella burnetii Scurry Q217. J Bacteriol 1997; 179:3293–3297 [View Article]
    [Google Scholar]
  52. Savinelli EA, Mallavia LP. Comparison of Coxiella burnetii plasmids to homologous chromosomal sequences present in a plasmidless endocarditis-causing isolate. Ann N Y Acad Sci 1990; 590:523–533 [View Article]
    [Google Scholar]
  53. Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella . Infect Immun 2009; 77:642–656 [View Article]
    [Google Scholar]
  54. Voth DE, Beare PA, Howe D, Sharma UM, Samoilis G et al. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 2011; 193:1493–1503 [View Article]
    [Google Scholar]
  55. D'Amato F, Eldin C, Raoult D. The contribution of genomics to the study of Q fever. Future Microbiol 2016; 11:253–272 [View Article]
    [Google Scholar]
  56. IHU - Méditerranée Infection Multi Spacers Typing - Coxiella Burnetii. http://ifr48.timone.univ-mrs.fr/mst/coxiella_burnetii/ August 2017
  57. Grissa I, Bouchon P, Pourcel C, Vergnaud G. 2008; MLVABank for microbes genotyping. http://microbesgenotyping.i2bc.paris-saclay.fr/databases/ October 2017
  58. Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii . Proc Natl Acad Sci USA 2009; 106:4430–4434 [View Article]
    [Google Scholar]
  59. Kuley R, Kuijt E, Smits MA, Roest HIJ, Smith HE et al. Genome plasticity and polymorphisms in critical genes correlate with increased virulence of dutch outbreak-related Coxiella burnetii strains. Front Microbiol 2017; 8:1526 [View Article]
    [Google Scholar]
  60. D'Amato F, Rouli L, Edouard S, Tyczka J, Million M et al. The genome of Coxiella burnetii Z3055, a clone linked to the Netherlands Q fever outbreaks, provides evidence for the role of drift in the emergence of epidemic clones. Comp Immunol Microbiol Infect Dis 2014; 37:281–288 [View Article]
    [Google Scholar]
  61. Pearson T, Hornstra HM, Sahl JW, Schaack S, Schupp JM et al. When outgroups fail; phylogenomics of rooting the emerging pathogen, Coxiella burnetii . Syst Biol 2013; 62:752–762 [View Article]
    [Google Scholar]
  62. Hemsley CM, O'Neill PA, Essex-Lopresti A, Norville IH, Atkins TP et al. Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics 2019; 20:441 [View Article]
    [Google Scholar]
  63. Larson CL, Martinez E, Beare PA, Jeffrey B, Heinzen RA et al. Right on Q: genetics begin to unravel Coxiella burnetii host cell interactions. Future Microbiol 2016; 11:919–939 [View Article]
    [Google Scholar]
  64. Tilburg JJHC, Roest H-JIJ, Buffet S, Nabuurs-Franssen MH, Horrevorts AM et al. Epidemic genotype of Coxiella burnetii among goats, sheep, and humans in the Netherlands. Emerg Infect Dis 2012; 18:887–889 [View Article]
    [Google Scholar]
  65. Pearson T, Hornstra HM, Hilsabeck R, Gates LT, Olivas SM et al. High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiol 2014; 14:41 [View Article]
    [Google Scholar]
  66. Reichel R, Mearns R, Brunton L, Jones R, Horigan M et al. Description of a Coxiella burnetii abortion outbreak in a dairy goat herd, and associated serology, PCR and genotyping results. Res Vet Sci 2012; 93:1217–1224 [View Article]
    [Google Scholar]
  67. Kersh GJ, Oliver LD, Self JS, Fitzpatrick KA, Massung RF. Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector Borne Zoonotic Dis 2011; 11:1433–1438 [View Article]
    [Google Scholar]
  68. Vincent GA. Molecular characterisation of Australian Coxiella burnetii isolates Murdoch University; 2013
    [Google Scholar]
  69. Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G et al. Coxiella burnetii genotyping. Emerg Infect Dis 2005; 11:1211–1217 [View Article]
    [Google Scholar]
  70. Beare PA, Jeffrey BM, Martens CA, Heinzen RA. Draft genome sequences of the avirulent Coxiella burnetii dugway 7D77-80 and dugway 7E65-68 strains isolated from rodents in Dugway, Utah. Genome Announc 2017; 5:e00984–00917 [View Article]
    [Google Scholar]
  71. Norville IH, Hartley MG, Martinez E, Cantet F, Bonazzi M et al. Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology 2014; 160:1175–1181 [View Article]
    [Google Scholar]
  72. Kohler LJ, Reed SCO, Sarraf SA, Arteaga DD, Newton HJ et al. Effector protein cig2 decreases host tolerance of infection by directing constitutive fusion of autophagosomes with the Coxiella-Containing vacuole. MBio 2016; 7:e01127–01116 [View Article]
    [Google Scholar]
  73. Martinez E, Allombert J, Cantet F, Lakhani A, Yandrapalli N et al. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc Natl Acad Sci USA 2016; 113:E3260–E3269 [View Article]
    [Google Scholar]
  74. Weber MM, Faris R, van Schaik EJ, McLachlan JT, Wright WU et al. The type IV secretion system effector protein CirA stimulates the GTPase activity of RhoA and Is required for virulence in a mouse model of Coxiella burnetii infection. Infect Immun 2016; 84:2524–2533 [View Article]
    [Google Scholar]
  75. Selim A, Yang E, Rousset E, Thiéry R, Sidi-Boumedine K. Characterization of Coxiella burnetii strains from ruminants in a Galleria mellonella host-based model. New Microbes New Infect 2018; 24:8–13 [View Article]
    [Google Scholar]
  76. van Schaik EJ, Case ED, Martinez E, Bonazzi M, Samuel JE. The SCID Mouse Model for Identifying Virulence Determinants in Coxiella burnetii . Front Cell Infect Microbiol 2017; 7:25 [View Article]
    [Google Scholar]
  77. Norville IH, Hatch GJ, Bewley KR, Atkinson DJ, Hamblin KA et al. Efficacy of liposome-encapsulated ciprofloxacin in a murine model of Q fever. Antimicrob Agents Chemother 2014; 58:5510–5518 [View Article]
    [Google Scholar]
  78. Baeten LA, Podell BK, Sluder AE, Garritsen A, Bowen RA et al. Standardized guinea pig model for Q fever vaccine reactogenicity. PLoS One 2018; 13:e0205882 [View Article]
    [Google Scholar]
  79. Waag DM, England MJ, Tammariello RF, Byrne WR, Gibbs P et al. Comparative efficacy and immunogenicity of Q fever chloroform:methanol residue (CMR) and phase I cellular (Q-Vax) vaccines in cynomolgus monkeys challenged by aerosol. Vaccine 2002; 20:2623–2634 [View Article]
    [Google Scholar]
  80. Bastos RG, Howard ZP, Hiroyasu A, Goodman AG. Host and Bacterial Factors Control Susceptibility of Drosophila melanogaster to Coxiella burnetii Infection. Infect Immun 2017; 85:e00218–00217 [View Article]
    [Google Scholar]
  81. Battisti JM, Watson LA, Naung MT, Drobish AM, Voronina E et al. Analysis of the Caenorhabditis elegans innate immune response to Coxiella burnetii . Innate Immun 2017; 23:111–127 [View Article]
    [Google Scholar]
  82. Russell-Lodrigue KE, Zhang GQ, McMurray DN, Samuel JE. Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect Immun 2006; 74:6085–6091 [View Article]
    [Google Scholar]
  83. Waag DM, Byrne WR, Estep J, Gibbs P, Pitt ML et al. Evaluation of cynomolgus (Macaca fascicularis) and rhesus (Macaca mulatta) monkeys as experimental models of acute Q fever after aerosol exposure to phase-I Coxiella burnetii . Lab Anim Sci 1999; 49:634–638
    [Google Scholar]
  84. Gonder JC, Kishimoto RA, Kastello MD, Pedersen CE, Larson EW. Cynomolgus monkey model for experimental Q fever infection. J Infect Dis 1979; 139:191–196 [View Article]
    [Google Scholar]
  85. Bewley KR. Animal models of Q fever (Coxiella burnetii). Comp Med 2013; 63:469–476
    [Google Scholar]
  86. Hoffmann JA. The immune response of Drosophila . Nature 2003; 426:33–38 [View Article]
    [Google Scholar]
  87. Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013; 4:597–603 [View Article]
    [Google Scholar]
  88. Meisel JD, Kim DH. Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans . Trends Immunol 2014; 35:465–470 [View Article]
    [Google Scholar]
  89. Avery L, Thomas JH. Chapter 24. feeding and defecation. In Riddle DL, Blumenthal T, Meyer BJ, Priess JR. (editors) C elegans II Cold Spring Harbor (NY: Cold Spring Harbor Laboratory Press; 1997
    [Google Scholar]
  90. Ermolaeva MA, Schumacher B. Insights from the worm: the C. elegans model for innate immunity. Semin Immunol 2014; 26:303–309 [View Article]
    [Google Scholar]
  91. Hellinga JR, Garduño RA, Kormish JD, Tanner JR, Khan D et al. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes. Microbiologyopen 2015; 4:660–681 [View Article]
    [Google Scholar]
  92. Zusman T, Yerushalmi G, Segal G. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila . Infect Immun 2003; 71:3714–3723 [View Article]
    [Google Scholar]
  93. Brandt JP, Ringstad N. Toll-like receptor signaling promotes development and function of sensory neurons required for a C. elegans pathogen-avoidance behavior. Curr Biol 2015; 25:2228–2237 [View Article]
    [Google Scholar]
  94. Ammerdorffer A, Schoffelen T, Gresnigt MS, Oosting M, den Brok MH et al. Recognition of Coxiella burnetii by Toll-like receptors and nucleotide-binding oligomerization domain-like receptors. J Infect Dis 2015; 211:978–987 [View Article]
    [Google Scholar]
  95. Ramstead AG, Robison A, Blackwell A, Jerome M, Freedman B et al. Roles of Toll-Like receptor 2 (TLR2), TLR4, and MyD88 during pulmonary Coxiella burnetii infection. Infect Immun 2016; 84:940–949 [View Article]
    [Google Scholar]
  96. Brutkiewicz RR. Cell signaling pathways that regulate antigen presentation. J Immunol 2016; 197:2971–2979 [View Article]
    [Google Scholar]
  97. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 2002; 297:623–626 [View Article]
    [Google Scholar]
  98. Evans EA, Chen WC, Tan M-W. The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans . Aging Cell 2008; 7:879–893 [View Article]
    [Google Scholar]
  99. Wangler MF, Hu Y, Shulman JM. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis Model Mech 2017; 10:77–88 [View Article]
    [Google Scholar]
  100. Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. Dev Comp Immunol 2014; 42:25–35 [View Article]
    [Google Scholar]
  101. Capo C, Zugun F, Stein A, Tardei G, Lepidi H et al. Upregulation of tumor necrosis factor alpha and interleukin-1 beta in Q fever endocarditis. Infect Immun 1996; 64:1638–1642
    [Google Scholar]
  102. Brandt SM, Dionne MS, Khush RS, Pham LN, Vigdal TJ et al. Secreted bacterial effectors and host-produced eiger/TNF drive death in a Salmonella-Infected fruit fly. PLoS Biol 2004; 2:e418 [View Article]
    [Google Scholar]
  103. Loh JMS, Adenwalla N, Wiles S, Proft T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 2013; 4:419–428 [View Article]
    [Google Scholar]
  104. Lange A, Beier S, Huson DH, Parusel R, Iglauer F et al. Genome Sequence of Galleria mellonella (Greater Wax Moth). Genome Announc 2018; 6:e01220–01217 [View Article]
    [Google Scholar]
  105. Champion O, Titball R, Bates S, Standardization of G. Standardization of G. mellonella larvae to provide reliable and reproducible results in the study of fungal pathogens. J Fungi 2018; 4:108 [View Article]
    [Google Scholar]
  106. Tigertt WD, Benenson AS, Gochenour WS. Airborne Q fever. Bacteriol Rev 1961; 25:285–293
    [Google Scholar]
  107. La Scola B, Lepidi H, Raoult D. Pathologic changes during acute Q fever: influence of the route of infection and inoculum size in infected guinea pigs. Infect Immun 1997; 65:2443–2447
    [Google Scholar]
  108. Russell-Lodrigue KE, Andoh M, Poels MWJ, Shive HR, Weeks BR et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun 2009; 77:5640–5650 [View Article]
    [Google Scholar]
  109. Marrie TJ. Q fever pneumonia. Curr Opin Infect Dis 2004; 17:137–142 [View Article]
    [Google Scholar]
  110. Okimoto N, Asaoka N, Osaki K, Kurihara T, Yamato K et al. Clinical features of Q fever pneumonia. Respirology 2004; 9:278–282 [View Article]
    [Google Scholar]
  111. Scott GH, Williams JC, Stephenson EH. Animal models in Q fever: pathological responses of inbred mice to phase I Coxiella burnetii . J Gen Microbiol 1987; 133:691–700 [View Article]
    [Google Scholar]
  112. Andoh M, Naganawa T, Hotta A, Yamaguchi T, Fukushi H et al. Scid mouse model for lethal Q fever. Infect Immun 2003; 71:4717–4723 [View Article]
    [Google Scholar]
  113. Freylikhman O, Tokarevich N, Suvorov A, Vorobiova E, Totolian A. Coxiella burnetii persistence in three generations of mice after application of live attenuated human M-44 vaccine against Q fever. Ann N Y Acad Sci 2003; 990:496–499 [View Article]
    [Google Scholar]
  114. Tyczka J, Eberling S, Baljer G. Immunization experiments with recombinant Coxiella burnetii proteins in a murine infection model. Ann N Y Acad Sci 2005; 1063:143–148 [View Article]
    [Google Scholar]
  115. Zhang G, Russell-Lodrigue KE, Andoh M, Zhang Y, Hendrix LR et al. Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol 2007; 179:8372–8380 [View Article]
    [Google Scholar]
  116. Lepidi H, Houpikian P, Liang Z, Raoult D. Cardiac valves in patients with Q fever endocarditis: microbiological, molecular, and histologic studies. J Infect Dis 2003; 187:1097–1106 [View Article]
    [Google Scholar]
  117. Mühlemann K, Matter L, Meyer B, Schopfer K. Isolation of Coxiella burnetii from heart valves of patients treated for Q fever endocarditis. J Clin Microbiol 1995; 33:428–431
    [Google Scholar]
  118. Stein A, Louveau C, Lepidi H, Ricci F, Baylac P et al. Q fever pneumonia: virulence of Coxiella burnetii pathovars in a murine model of aerosol infection. Infect Immun 2005; 73:2469–2477 [View Article]
    [Google Scholar]
  119. Elliott A, Peng Y, Zhang G. Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection. Infect Immun 2013; 81:4604–4614 [View Article]
    [Google Scholar]
  120. Anderson AO. Operation Whitecoat 1954-73: ethical use of human subjects in infectious disease research; 2013
  121. Long CM, Beare PA, Cockrell DC, Larson CL, Heinzen RA. Comparative virulence of diverse Coxiella burnetii strains. Virulence 2019; 10:133–150 [View Article]
    [Google Scholar]
  122. Walter MC, Vincent GA, Stenos J, Graves S, Frangoulidis D. Genome sequence of Coxiella burnetii strain AuQ01 (Arandale) from an Australian patient with acute Q fever. Genome Announc 2014; 2:e00964–00914 [View Article]
    [Google Scholar]
  123. Lockhart M, Islam A, Graves S, Fenwick S, Stenos J. Detecting and measuring small numbers of viable Coxiella burnetii . FEMS Immunol Med Microbiol 2012; 64:61–65 [View Article]
    [Google Scholar]
  124. Mori M, Boarbi S, Michel P, Bakinahe R, Rits K et al. In vitro and in vivo infectious potential of Coxiella burnetii: a study on Belgian livestock isolates. PLoS One 2013; 8:e67622 [View Article]
    [Google Scholar]
  125. Olivas S, Hornstra H, Priestley RA, Kaufman E, Hepp C et al. Massive dispersal of Coxiella burnetii among cattle across the United States. Microb Genom 2016; 2:e000068 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001064
Loading
/content/journal/jmm/10.1099/jmm.0.001064
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error