1887

Abstract

. This study aimed to characterize 27 isolates obtained from peritoneal dialysis (PD)-related peritonitis that occurred at the University Hospital of Botucatu Medical School, Brazil, between 1997 and 2015.

. These isolates were characterized regarding the occurrence of 22 virulence factor-encoding genes, antimicrobial resistance and biofilm production. We then evaluated whether these factors influenced the clinical outcome.

. Over an 18-year period, 726 episodes of PD-related peritonitis were diagnosed, with 27 of them (3.7 %) being due to . The majority of the isolates were classified in phylogroups B1 (33.3 %), B2 (30.0 %) or F (18.0 %). (100.0 %), (66.7 %) and (51.9 %) were the most prevalent genes, while , , , and were significantly more prevalent among isolates belonging to phylogroups B2 and F (<0.05). Non-susceptibility to quinolones was detected in six isolates, which harboured chromosomal and/or plasmid-mediated quinolone resistance determinants, while two CTX-M extended-spectrum β-lactamase-producing were identified. Virulence factor-encoding genes (alone or in combination) and antimicrobial resistance were not associated with non-resolution outcomes. However, there was a trend for the ability to produce biofilm to be associated with treatment failure, although this association was not statistically significant.

. The isolates were heterogeneous in terms of the features investigated, and were susceptible to most of the antimicrobial drugs tested, despite the unsuccessful treatment observed in more than 50.0 % of the patients. Studies including more cases could help to clarify if biofilm production can influence the outcome in patients with PD-related peritonitis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001043
2019-09-01
2019-09-18
Loading full text...

Full text loading...

References

  1. Davenport A. Peritonitis remains the major clinical complication of peritoneal dialysis: the London, UK, peritonitis audit 2002-2003. Perit Dial Int 2009;29:297–302
    [Google Scholar]
  2. Pecoits-Filho R, Yabumoto FM, Campos LG, Moraes TP, Figueiredo AE et al. Peritonitis as a risk factor for long-term cardiovascular mortality in peritoneal dialysis patients: the case of a friendly fire?. Nephrology 2018;23:253–258 [CrossRef]
    [Google Scholar]
  3. Cho Y, Johnson DW. Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes. Am J Kidney Dis 2014;64:278–289 [CrossRef]
    [Google Scholar]
  4. Kim DK, Yoo TH, Ryu DR, Xu ZG, Kim HJ et al. Changes in causative organisms and their antimicrobial susceptibilities in CapD peritonitis: a single center's experience over one decade. Perit Dial Int 2004;24:424–432
    [Google Scholar]
  5. Troidle L, Gorban-Brennan N, Kliger A, Finkelstein F. Differing outcomes of gram-positive and gram-negative peritonitis. Am J Kidney Dis 1998;32:623–628 [CrossRef]
    [Google Scholar]
  6. Feng X, Yang X, Yi C, Guo Q, Mao H et al. Escherichia coli Peritonitis in peritoneal dialysis: the prevalence, antibiotic resistance and clinical outcomes in a South China dialysis center. Perit Dial Int 2014;34:308–316 [CrossRef]
    [Google Scholar]
  7. Jarvis EM, Hawley CM, McDonald SP, Brown FG, Rosman JB et al. Predictors, treatment, and outcomes of non-Pseudomonas gram-negative peritonitis. Kidney Int 2010;78:408–414 [CrossRef]
    [Google Scholar]
  8. de Moraes TP, Olandoski M, Caramori JCT, Martin LC, Fernandes N et al. Novel predictors of peritonitis-related outcomes in the BRAZPD cohort. Perit Dial Int 2014;34:179–187 [CrossRef]
    [Google Scholar]
  9. Mujais S. Microbiology and outcomes of peritonitis in North America. Kidney Int 2006;70:S55–S62 [CrossRef]
    [Google Scholar]
  10. Szeto CC, Leung CB, Chow KM, Kwan BCH, Law MC et al. Change in bacterial aetiology of peritoneal dialysis-related peritonitis over 10 years: experience from a centre in south-east Asia. Clin Microbiol Infect 2005;11:837–839 [CrossRef]
    [Google Scholar]
  11. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M et al. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013;26:822–880 [CrossRef]
    [Google Scholar]
  12. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998;11:142–201 [CrossRef]
    [Google Scholar]
  13. Russo TA, Johnson JR. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis 2000;181:1753–1754 [CrossRef]
    [Google Scholar]
  14. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2:123–140 [CrossRef]
    [Google Scholar]
  15. Gransden WR, Eykyn SJ, Phillips I, Rowe B. Bacteremia due to Escherichia coli: a study of 861 episodes. Rev Infect Dis 1990;12:1008–1018 [CrossRef]
    [Google Scholar]
  16. Lobo JVD, Villar KR, de Andrade Júnior MP, Bastos KdeA. Predictor factors of peritoneal dialysis-related peritonitis. J Bras Nefrol 2010;32:156–164
    [Google Scholar]
  17. Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2010;8:26–38 [CrossRef]
    [Google Scholar]
  18. Camargo CH, Cunha Mde L, Caramori JCT, Mondelli AL, Montelli AC et al. Peritoneal dialysis-related peritonitis due to coagulase-negative Staphylococcus: a review of 115 cases in a Brazilian center. Clin J Am Soc Nephrol 2014;9:1074–1081 [CrossRef]
    [Google Scholar]
  19. Zelenitsky SA, Howarth J, Lagacé-Wiens P, Sathianathan C, Ariano R et al. Microbiological trends and antimicrobial resistance in peritoneal dialysis-related peritonitis, 2005 to 2014. Perit Dial Int 2017;37:170–176 [CrossRef]
    [Google Scholar]
  20. Lin W-H, Tseng C-C, Wu A-B, Chang Y-T, Kuo T-H et al. Clinical and microbiological characteristics of peritoneal dialysis-related peritonitis caused by Escherichia coli in southern Taiwan. Eur J Clin Microbiol Infect Dis 2018;37:1699–1707 [CrossRef]
    [Google Scholar]
  21. Li PKT, Szeto CC, Piraino B, de Arteaga J, Fan S et al. Ispd peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Int 2016;36:481–508 [CrossRef]
    [Google Scholar]
  22. Toledo MRF, Fontes CF, Trabulsi LR. EPM-modificação do meio de Rugai E Araújo para a realização simultânea DOS testes de produção de gás a partir dA glicose, H2S, urease E triptofanodesaminase. Revista Brasileira de Microbiologia 1982;13:309–315
    [Google Scholar]
  23. Toledo MRF, Fontes CF, Trabulsi LR. MILi-um meio para a realização DOS testes de motilidade, indol E lisina descarboxilase. Revista Brasileira de Microbiologia 1982;13:230–235
    [Google Scholar]
  24. Ewing WH, Edwards EPR. Ewing’s Identification of Enterobacteriaceae , 4th ed. New York: Elsevier; 1986
    [Google Scholar]
  25. Ori EL, Takagi EH, Andrade TS, Miguel BT, Cergole-Novella MC et al. Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance. Epidemiol Infect 2019;147:1–9 [CrossRef]
    [Google Scholar]
  26. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 2000;181:261–272 [CrossRef]
    [Google Scholar]
  27. Santos ACM, Zidko ACM, Pignatari AC, Silva RM. Assessing the diversity of the virulence potential of Escherichia coli isolated from bacteremia in São Paulo, Brazil. Braz J Med Biol Res 2013;46:968–973 [CrossRef]
    [Google Scholar]
  28. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the National databases to the new size standard. J Clin Microbiol 2005;43:1045–1050 [CrossRef]
    [Google Scholar]
  29. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013;5:58–65 [CrossRef]
    [Google Scholar]
  30. CLSI Performance standards for antimicrobial susceptibility testing CLSI supplement M100, 28th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  31. Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum -lactamases conferring transferable resistance to newer -lactam agents in enterobacteriaceae: hospital prevalence and susceptibility patterns. Clinical Infectious Diseases 1988;10:867–878 [CrossRef]
    [Google Scholar]
  32. Fernandes SA, Camargo CH, Francisco GR, Bueno MFC, Garcia DO et al. Prevalence of Extended-Spectrum β-Lactamases CTX-M-8 and CTX-M-2-Producing Salmonella Serotypes from Clinical and Nonhuman Isolates in Brazil. Microb Drug Resist 2017;23:580–589 [CrossRef]
    [Google Scholar]
  33. Eaves DJ, Liebana E, Woodward MJ, Piddock LJV. Detection of gyrA mutations in quinolone-resistant Salmonella enterica by denaturing high-performance liquid chromatography. J Clin Microbiol 2002;40:4121–4125 [CrossRef]
    [Google Scholar]
  34. Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ et al. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother 2004;48:4012–4015 [CrossRef]
    [Google Scholar]
  35. Kim HB, Wang M, Park CH, Kim E-C, Jacoby GA et al. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 2009;53:3582–3584 [CrossRef]
    [Google Scholar]
  36. Komp Lindgren P, Karlsson A, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother 2003;47:3222–3232 [CrossRef]
    [Google Scholar]
  37. Casas MRT, Camargo CH, Soares FB, da Silveira WD, Fernandes SA. Presence of plasmid-mediated quinolone resistance determinants and mutations in gyrase and topoisomerase in Salmonella enterica isolates with resistance and reduced susceptibility to ciprofloxacin. Diagn Microbiol Infect Dis 2016;85:85–89 [CrossRef]
    [Google Scholar]
  38. Hernandes RT, De la Cruz MA, Yamamoto D, Girón JA, Gomes TAT. Dissection of the role of pili and type 2 and 3 secretion systems in adherence and biofilm formation of an atypical enteropathogenic Escherichia coli strain. Infect Immun 2013;81:3793–3802 [CrossRef]
    [Google Scholar]
  39. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007;115:891–899 [CrossRef]
    [Google Scholar]
  40. Sheikh J, Hicks S, Dall'Agnol M, Phillips AD, Nataro JP. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 2001;41:983–997 [CrossRef]
    [Google Scholar]
  41. Shigidi MMT, Fituri OM, Chandy SK, Asim M, Al Malki HA et al. Microbial spectrum and outcome of peritoneal dialysis related peritonitis in Qatar. Saudi J Kidney Dis Transpl 2010;21:168–173
    [Google Scholar]
  42. Akoh JA. Peritoneal dialysis associated infections: an update on diagnosis and management. World J Nephrol 2012;1:106–122 [CrossRef]
    [Google Scholar]
  43. Li YF, Su N, Chen SY, Hu WX, Li FF et al. Genetic background of Escherichia coli isolates from peritoneal dialysis patients with peritonitis and uninfected control subjects. Genet Mol Res 2016;15:
    [Google Scholar]
  44. Wang MC, Tseng CC, Wu AB, Huang JJ, Sheu BS et al. Different roles of host and bacterial factors in Escherichia coli extra-intestinal infections. Clin Microbiol Infect 2009;15:372–379 [CrossRef]
    [Google Scholar]
  45. Köhler C-D, Dobrindt U. What defines extraintestinal pathogenic Escherichia coli?. Int J Med Microbiol 2011;301:642–647 [CrossRef]
    [Google Scholar]
  46. Starčič Erjavec M, Žgur-Bertok D. Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans—the Trojan horse within our gut. FEMS Microbiol Lett 2015;362: [CrossRef]
    [Google Scholar]
  47. Yip T, Tse KC, Lam MF, Tang S, FK L et al. Risk factors and outcomes of extended-spectrum beta-lactamase-producing E. coli peritonitis in CAPD patients. Perit Dial Int 2006;26:191–197
    [Google Scholar]
  48. Diekema DJ, Hsueh P-R, Mendes RE, Pfaller MA, Rolston KV et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2019;63: [CrossRef]
    [Google Scholar]
  49. Machuca J, Ortiz M, Recacha E, Díaz-De-Alba P, Docobo-Perez F et al. Impact of AAC(6')-Ib-cr in combination with chromosomal-mediated mechanisms on clinical quinolone resistance in Escherichia coli. J Antimicrob Chemother 2016;71:3066–3071 [CrossRef]
    [Google Scholar]
  50. Pitout JDD, Laupland KB. Extended-Spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008;8:159–166 [CrossRef]
    [Google Scholar]
  51. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2017;72:2145–2155 [CrossRef]
    [Google Scholar]
  52. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM et al. Ctx-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007;59:165–174 [CrossRef]
    [Google Scholar]
  53. Zong Z, Partridge SR, Thomas L, Iredell JR. Dominance of blaCTX-M within an Australian extended-spectrum beta-lactamase gene pool. Antimicrob Agents Chemother 2008;52:4198–4202 [CrossRef]
    [Google Scholar]
  54. Mulvey MR, Bryce E, Boyd D, Ofner-Agostini M, Christianson S et al. Ambler class A extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob Agents Chemother 2004;48:1204–1214 [CrossRef]
    [Google Scholar]
  55. Lewis JS, Herrera M, Wickes B, Patterson JE, Jorgensen JH. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother 2007;51:4015–4021 [CrossRef]
    [Google Scholar]
  56. Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 2006;9:466–475 [CrossRef]
    [Google Scholar]
  57. Silva KCda, Lincopan N. Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico E implicações para O agronegócio. J Bras Patol Med Lab 2012;48:91–99 [CrossRef]
    [Google Scholar]
  58. Pitout JDD, Gregson DB, Church DL, Elsayed S, Laupland KB. Community-Wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary health region. J Clin Microbiol 2005;43:2844–2849 [CrossRef]
    [Google Scholar]
  59. Cergole-Novella MC, Guth BEC, Castanheira M, Carmo MS, Pignatari ACC. First description of bla(CTX-M-14)- and bla(CTX-M-15)-producing Escherichia coli isolates in Brazil. Microb Drug Resist 2010;16:177–184 [CrossRef]
    [Google Scholar]
  60. Villegas MV, Kattan JN, Quinteros MG, Casellas JM. Prevalence of extended-spectrum beta-lactamases in South America. Clin Microbiol Infect 2008;14 Suppl 1:154–158 [CrossRef]
    [Google Scholar]
  61. Rocha FR, Pinto VPT, Barbosa FCB. The spread of CTX-M-type extended-spectrum β-lactamases in Brazil: a systematic review. Microb Drug Resist 2016;22:301–311 [CrossRef]
    [Google Scholar]
  62. Ortiz de la Tabla V, Ortega A, Buñuel F, Pérez-Vázquez M, Marcos B et al. Detection of the high-risk clone ST131 of Escherichia coli carrying the colistin resistance gene mcr-1 and causing acute peritonitis. Int J Antimicrob Agents 2017;49:115–116 [CrossRef]
    [Google Scholar]
  63. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2000;44:1818–1824 [CrossRef]
    [Google Scholar]
  64. Mittal S, Sharma M, Chaudhary U. Biofilm and multidrug resistance in uropathogenic Escherichia coli. Pathog Glob Health 2015;109:26–29 [CrossRef]
    [Google Scholar]
  65. Zuroff TR, Bernstein H, Lloyd-Randolfi J, Jimenez-Taracido L, Stewart PS et al. Robustness analysis of culturing perturbations on Escherichia coli colony biofilm beta-lactam and aminoglycoside antibiotic tolerance. BMC Microbiol 2010;10:185 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001043
Loading
/content/journal/jmm/10.1099/jmm.0.001043
Loading

Data & Media loading...

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error