1887

Abstract

Miramistin is a topical antiseptic with broad antimicrobial activity that was developed in the Soviet Union during the Cold War.

To investigate the antifungal activity of miramistin against clinically relevant drug-resistant fungi.

The activity of miramistin was determined following Clinical and Laboratory Standards Institute (CLSI) guidelines. Mammalian cell toxicity was tested using a McCoy cell line and topical and systemic tolerability, and efficacy was tested using models.

The minimal inhibitory concentration (MIC) range against fungi was 1.56–25 mg l (GM 3.13 mg l ). In the . model, miramistin provided potent survival benefits for and infection. Miramistin was tolerated by McCoy cell lines at concentrations up to 1000 mg l and was systemically safe in . at 2000 mg kg. Topical administration at 32 000 mg l was well tolerated with no adverse effects.

These findings support further investigation of miramistin and suggest its possible use for treatment of superficial fungal infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001007
2019-07-01
2020-01-18
Loading full text...

Full text loading...

References

  1. Vasil’eva TV, Raskidaĭlo AS, Arutcheva AA, Okropiridze GG, Petrakov AA et al. [Antibacterial activity and clinical effectiveness of the new antiseptic miramistin]. Antibiot i Khimioterapii͡a = Antibiot Chemoterapy [Sic] / Minist Meditsinskoĭ i Mikrobiol Promyshlennosti SSSR 1993;38:61–63
    [Google Scholar]
  2. Arzumanian VG. [Minimum inhibitory concentrations of various antifungal agents against basidiomycetes clinical isolates]. Antibiot i Khimioterapii͡a = Antibiot Chemoterapy [Sic] / Minist Meditsinskoĭ i Mikrobiol Promyshlennosti SSSR 2002;47:7–10
    [Google Scholar]
  3. Криворутченко ЮЛ. Инактивация мирамистином вируса иммунодефицита человека. Журн Дерматол и Венерол 1990;1:22–24
    [Google Scholar]
  4. Krivorutchenko IL, KrivosheinIuS, Marennikova SS, Stepanova LG, Nosik DN, Kalnina LB et al. [Study of the anti-HIV activity of miramistin]. Vopr Virusol 1994;39:267–269
    [Google Scholar]
  5. Криворутченко ЮЛ. Чувствительность к мирамистину, амфотерицину в и таурозиду Sx1 грибов, выделенных от больных в Крыму. Biomed Biosoc Anthropol 2010;144–149
    [Google Scholar]
  6. Назарчук ВГ, Палій В, Гончар О, Олійник ДП, Назарчук ГГ et al. Мікробіологічна оцінка ефективності сучасних антисептиків, антимікробних матеріалів. Клінічна Фармація 2014;18:8–11
    [Google Scholar]
  7. Clinical Laboratory and Standards Institute M27-A3 (National Committee for Clinical Laboratory Standards) Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard, 2nd ed. Wayne, PA: Clin Lab Stand Institute; 2002
    [Google Scholar]
  8. Clinical Laboratory Standards Institute M38A (National Committee for Clinical Laboratory Standards) Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi, Approved standard. Clin Lab Stand Inst M38A (National Comm Clin Lab Stand); 2002
    [Google Scholar]
  9. Scully LR, Bidochka MJ. Serial passage of the opportunistic pathogen Aspergillus flavus through an insect host yields decreased saprobic capacity. Can J Microbiol 2005;51:185–189 [CrossRef]
    [Google Scholar]
  10. Fuchs BB, O’Brien E, El Khoury JB, Mylonakis E. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 2010;1:475–482 [CrossRef]
    [Google Scholar]
  11. Arvanitis M, Glavis-Bloom J, Mylonakis E. Invertebrate models of fungal infection. Biochim Biophys Acta 2013;1832:1378–1383 [CrossRef]
    [Google Scholar]
  12. Fallon J, Kelly J, Kavanagh K. Galleria mellonella as a model for fungal pathogenicity testing. Methods Mol Biol 2012;845:469–485
    [Google Scholar]
  13. Rich JT, Neely JG, Paniello RC, Voelker CCJ, Nussenbaum B et al. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg 2010;143:331–336 [CrossRef]
    [Google Scholar]
  14. Arabaci T, Türkez H, Çanakçi CF, Özgöz M. Assessment of cytogenetic and cytotoxic effects of chlorhexidine digluconate on cultured human lymphocytes. Acta Odontol Scand 2013;71:1255–1260 [CrossRef]
    [Google Scholar]
  15. Salimi A, Alami B, Pourahmad J. Analysis of cytotoxic effects of chlorhexidine gluconate as antiseptic agent on human blood lymphocytes. J Biochem Mol Toxicol 2017;31:e21918 [CrossRef]
    [Google Scholar]
  16. Li YC, Kuan YH, Lee SS, Huang FM, Chang YC. Cytotoxicity and genotoxicity of chlorhexidine on macrophages in vitro. Environ Toxicol 2014;29:452–458 [CrossRef]
    [Google Scholar]
  17. Vouzara T, Koulaouzidou E, Ziouti F, Economides N. Combined and independent cytotoxicity of sodium hypochlorite, ethylenediaminetetraacetic acid and chlorhexidine. Int Endod J 2016;49:764–773 [CrossRef]
    [Google Scholar]
  18. Li DD, Deng L, Hu GH, Zhao LX, Hu DD et al. Using Galleria mellonella-Candida albicans infection model to evaluate antifungal agents. Biol Pharm Bull 2013;36:1482–1487
    [Google Scholar]
  19. Свистов ЕВ. Отчет о доклинических и клинических исследованиях препарата Мирамистин раствор для местного применения 0,01% Москва: n.d
  20. Gottardi W, Debabov D, Nagl M. N-chloramines, a promising class of well-tolerated topical anti-infectives. Antimicrob Agents Chemother 2013;57:1107–1114 [CrossRef]
    [Google Scholar]
  21. Фахер С. Применение антисептика мирамистина для индивидуальной профилактики и лечения некоторых венерических болезней Крымский Государственный Медицинский Университет; 1991
  22. Шульга ЯВ. Сравнительный анализ антимикробного действия мази мирамистина и ее аналогов. Тезисы докладов Международной научной конференции Харьков: 1995; pp362–363
  23. Маланчин ІМ, Олійник НМ. Бактерицидна дія мірамістину на аутохтонну і алохтону мікрофлору шкіри. Здобутки клінічної і есперементальної медицини, Тернопіль: 1997; pp157–160
  24. Кривошеин ЮС, удько АП, Тышкевич ЛВ, Сарачан ТА. Зависимость между антимикробной активностью и строением в ряду некоторых четвертичных аммониевых соединений. Физиологически активные вещества в медицине Киев: 1984; pp50–52
  25. Obradovic-Tomasev M, Popovic A, Vuckovic N, Jovanovic M. Mixed fungal infection (Aspergillus, Mucor, and Candida) of severe hand injury. Case Rep Infect Dis 2014;2014:1–4
    [Google Scholar]
  26. Kronen R, Liang SY, Bochicchio G, Bochicchio K, Powderly WG et al. Invasive fungal infections secondary to traumatic injury. Int J Infect Dis 2017;62:102–111 [CrossRef]
    [Google Scholar]
  27. Heald AH, O’Halloran DJ, Richards K, Webb F, Jenkins S et al. Fungal infection of the diabetic foot: two distinct syndromes. Diabet Med 2001;18:567–572 [CrossRef]
    [Google Scholar]
  28. Horvath EE, Murray CK, Vaughan GM, Chung KK, Hospenthal DR et al. Fungal wound infection (not colonization) is independently associated with mortality in burn patients. Ann Surg 2007;245:978–985 [CrossRef]
    [Google Scholar]
  29. Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio 2016;7:1–12 [CrossRef]
    [Google Scholar]
  30. Barsoumian A, Sanchez CJ, Mende K, Tully CC, Beckius ML et al. In vitro toxicity and activity of Dakin's solution, mafenide acetate, and amphotericin B on filamentous fungi and human cells. J Orthop Trauma 2013;27:428–436 [CrossRef]
    [Google Scholar]
  31. Rodriguez C, Weintrob AC, Dunne JR, Weisbrod AB, Lloyd B et al. Clinical relevance of mold culture positivity with and without recurrent wound necrosis following combat-related injuries. J Trauma Acute Care Surg 2014;77:769–773 [CrossRef]
    [Google Scholar]
  32. Krivorutchenko IL, Krivoshein IS, Andronovskaia IB, Nosik DN, Kalnina LB et al. [The effect of fetal calf serum on the anti-HIV properties of miramistin]. Vopr Virusol 1994;39:281–283
    [Google Scholar]
  33. Svistov VV. [Myramistin–a Russian antiseptic with a wide spectrum of action]. Voen Zhurnal 1993;319:57–59
    [Google Scholar]
  34. Ameen M, Lear JT, Madan V, Mohd Mustapa MF, Richardson M. British association of dermatologists' guidelines for the management of onychomycosis 2014. Br J Dermatol 2014;171:937–958 [CrossRef]
    [Google Scholar]
  35. Zilberberg M, Micek ST, Kollef MH, Shelbaya A, Shorr AF. Risk factors for mixed complicated skin and skin structure infections to help tailor appropriate empiric therapy. Surg Infect 2012;13:377–382 [CrossRef]
    [Google Scholar]
  36. Agafonov AP, Skarnovich MO, Petrishchenko VA, Shishkina LN, Sergeev AN et al. [In vitro study of antiviral activity of Myramistin against subtypes H3N2 and H5N1 of influenza virus]. Antibiot Khimioter 2005;50:9–11
    [Google Scholar]
  37. Daneman N, Sarwar S, Fowler RA, Cuthbertson BH. Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infect Dis 2013;13:328–341 [CrossRef]
    [Google Scholar]
  38. Cunha CB. Antimicrobial stewardship programs. Med Clin North Am 2018;102:797–803 [CrossRef]
    [Google Scholar]
  39. Cunha CB. The pharmacoeconomic aspects of antibiotic stewardship programs. Med Clin North Am 2018;102:937–946 [CrossRef]
    [Google Scholar]
  40. Brotherton AL. Metrics of antimicrobial stewardship programs. Med Clin North Am 2018;102:965–976 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001007
Loading
/content/journal/jmm/10.1099/jmm.0.001007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error