RT Journal Article SR Electronic(1) A1 Tellis, Melroy A1 Joseph, Jiji A1 Khande, Hemant A1 Bhagwat, Sachin A1 Patel, MaheshYR 2019 T1 In vitro bactericidal activity of levonadifloxacin (WCK 771) against methicillin- and quinolone-resistant Staphylococcus aureus biofilms JF Journal of Medical Microbiology, VO 68 IS 8 SP 1129 OP 1136 DO https://doi.org/10.1099/jmm.0.000999 PB Microbiology Society, SN 1473-5644, AB Purpose. Staphylococcus aureus causes a wide range of infections, such as endocarditis, pneumonia, osteomyelitis, skin and soft tissue infections, and implant/in-dwelling device-related infections. S. aureus poses a significant challenge to clinicians because of its ability to rapidly acquire multi-drug resistance and quickly progress into a recurrent, chronic infection by biofilm formation. Levonadifloxacin (WCK 771) is a novel broad-spectrum antibacterial agent (it recently completed a phase 3 trial in India) with a differentiated mechanism of action involving high affinity to staphylococcal DNA gyrase, and is active against multi-drug-resistant (MDR) S. aureus , including those that are resistant to quinolones. The present study investigated the bactericidal activity of levonadifloxacin against biofilm-embedded S. aureus clinical isolates in comparison with other anti- S. aureus drugs. Methodology. The bactericidal activity of levonadifloxacin and comparator drugs such as vancomycin, linezolid and daptomycin was evaluated against planktonic and biofilm-encapsulated recent methicillin- and quinolone-resistant S. aureus clinical isolates using time–kill, biofilm eradication and scanning electron microscopy analysis. Results. Levonadifloxacin displayed a consistent ≥90 % bacterial kill rate against biofilm-embedded organisms, while vancomycin and linezolid displayed variable activity and daptomycin did not show any activity. Scanning electron microscopy images further confirmed the efficacy of levonadifloxacin against biofilm, showing the disruption of biofilm structure and a corresponding reduction in the viable bacterial count. Conclusion. These results show that levonadifloxacin has an improved bactericidal effect on biofilm-embedded quinolone-resistant S. aureus and meticillin-resistant S. aureus , and that it can be a promising treatment option for such infections., UL https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000999