1887

Abstract

Purpose. This study aimed to characterize 82 atypical enteropathogenic Escherichia coli (aEPEC) isolates, obtained from patients with diarrhea in Brazil, regarding their adherence patterns on HeLa cells and attaching and effacing (AE) lesion pathways.

Methodology. The adherence and fluorescence-actin staining (FAS) assays were performed using HeLa cells. AE lesion pathways were determined through the detection of tyrosine residue 474 (Y474) phosphorylation in the Tir protein, after its translocation to host cells, and by PCR assays for tir genotyping and detection of Tir-cytoskeleton coupling protein (tccP) genes.

Results. Regarding the adherence pattern, determined in the presence of d-mannose, 12 isolates (14.6 %) showed the localized adherence (LA)-like pattern, 3 (3.7  %) the aggregative adherence pattern and 4 (4.9  %) a hybrid LA/diffuse adherence pattern. In addition, 36 (43.9  %) isolates displayed an undefined adherence, and 26 (31.7  %) were non-adherent (NA), while one (1.2 %) caused cell detachment. Among the 26 NA aEPEC isolates, 11 showed a type 1 pilus-dependent adherence in assays performed without d-mannose, while 15 remained NA. Forty-eight (58.5 %) aEPEC were able to trigger F-actin accumulation underneath adherent bacteria (FAS-positive), which is an important feature of AE lesions. The majority (58.3 %) of these used the Tir-Nck pathway, while 39.6  % may use both Tir-Nck and Tir-TccP pathways to induce AE lesions.

Conclusion. Our results reveal the diversity of strategies used by aEPEC isolates to interact with and damage epithelial host cells, thereby causing diarrheal diseases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000998
2019-05-20
2019-10-19
Loading full text...

Full text loading...

References

  1. Baldini MM, Kaper JB, Levine MM, Candy DC, Moon HW. Plasmid-mediated adhesion in enteropathogenic Escherichia coli. J Pediatr Gastroenterol Nutr 1983;2:534–538 [CrossRef]
    [Google Scholar]
  2. Girón JA, Ho AS, Schoolnik GK. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 1991;254:710–713 [CrossRef]
    [Google Scholar]
  3. Donnenberg MS, Girón JA, Nataro JP, Kaper JB. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 1992;6:3427–3437 [CrossRef]
    [Google Scholar]
  4. Stone KD, Zhang HZ, Carlson LK, Donnenberg MS. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol 1996;20:325–337 [CrossRef]
    [Google Scholar]
  5. Scaletsky IC, Silva ML, Trabulsi LR. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun 1984;45:534–536
    [Google Scholar]
  6. Levine MM, Nataro JP, Karch H, Baldini MM, Kaper JB et al. The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. J Infect Dis 1985;152:550–559 [CrossRef]
    [Google Scholar]
  7. Trabulsi LR, Keller R, Gomes TAT. Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 2002;8:508–513 [CrossRef]
    [Google Scholar]
  8. Rodrigues J, Scaletsky IC, Campos LC, Gomes TA, Whittam TS et al. Clonal structure and virulence factors in strains of Escherichia coli of the classic serogroup O55. Infect Immun 1996;64:2680–2686
    [Google Scholar]
  9. Vieira MA, Andrade JR, Trabulsi LR, Rosa AC, Dias AM et al. Phenotypic and genotypic characteristics of Escherichia coli strains of non-enteropathogenic E. coli (EPEC) serogroups that carry EAE and lack the EPEC adherence factor and Shiga toxin DNA probe sequences. J Infect Dis 2001;183:762–772 [CrossRef]
    [Google Scholar]
  10. Abe CM, Trabulsi LR, Blanco J, Blanco M, Dahbi G et al. Virulence features of atypical enteropathogenic Escherichia coli identified by the eae(+) EAF-negative stx(−) genetic profile. Diagn Microbiol Infect Dis 2009;64:357–365 [CrossRef]
    [Google Scholar]
  11. Scaletsky IC, Aranda KR, Souza TB, Silva NP. Adherence factors in atypical enteropathogenic Escherichia coli strains expressing the localized adherence-like pattern in HEp-2 cells. J Clin Microbiol 2010;48:302–306 [CrossRef]
    [Google Scholar]
  12. Salit IE, Gotschlich EC. Type I Escherichia coli pili: characterization of binding to monkey kidney cells. J Exp Med 1977;146:1182–1194 [CrossRef]
    [Google Scholar]
  13. Cravioto A, Gross RJ, Scotland SM, Rowe B. An adhesive factor found in strains of Escherichia coli belonging to the traditional infantile enteropathogenic serotypes. Curr Microbiol 1979;3:95–99 [CrossRef]
    [Google Scholar]
  14. Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 1983;41:1340–1351
    [Google Scholar]
  15. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 1995;92:1664–1668 [CrossRef]
    [Google Scholar]
  16. Jerse AE, Yu J, Tall BD, Kaper JB. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA 1990;87:7839–7843 [CrossRef]
    [Google Scholar]
  17. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 1997;91:511–520 [CrossRef]
    [Google Scholar]
  18. Nougayrede JP, Fernandes PJ, Donnenberg MS. Adhesion of enteropathogenic Escherichia coli to host cells. Cell Microbiol 2003;5:359–372 [CrossRef]
    [Google Scholar]
  19. Lai Y, Rosenshine I, Leong JM, Frankel G. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 2013;15:1796–1808
    [Google Scholar]
  20. DeVinney R, Stein M, Reinscheid D, Abe A, Ruschkowski S et al. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun 1999;67:2389–2398
    [Google Scholar]
  21. Campellone KG, Robbins D, Leong JM. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 2004;7:217–228 [CrossRef]
    [Google Scholar]
  22. Garmendia J, Phillips AD, Carlier MF, Chong Y, Schüller S et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 2004;6:1167–1183 [CrossRef]
    [Google Scholar]
  23. Whale AD, Hernandes RT, Ooka T, Beutin L, Schüller S et al. TccP2-mediated subversion of actin dynamics by EPEC 2 - a distinct evolutionary lineage of enteropathogenic Escherichia coli. Microbiology 2007;153:1743–1755 [CrossRef]
    [Google Scholar]
  24. Ochoa TJ, Barletta F, Contreras C, Mercado E. New insights into the epidemiology of enteropathogenic Escherichia coli infection. Trans R Soc Trop Med Hyg 2008;102:852–856 [CrossRef]
    [Google Scholar]
  25. Hernandes RT, Elias WP, Vieira MA, Gomes TAT. An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett 2009;297:137–149 [CrossRef]
    [Google Scholar]
  26. Afset JE, Bevanger L, Romundstad P, Bergh K. Association of atypical enteropathogenic Escherichia coli (EPEC) with prolonged diarrhoea. J Med Microbiol 2004;53:1137–1144 [CrossRef]
    [Google Scholar]
  27. Dias RCB, Dos Santos BC, Dos Santos LF, Vieira MA, Yamatogi RS et al. Diarrheagenic Escherichia coli pathotypes investigation revealed atypical enteropathogenic E. coli as putative emerging diarrheal agents in children living in Botucatu, São Paulo State, Brazil. APMIS 2016;124:299–308 [CrossRef]
    [Google Scholar]
  28. Hao R, Qiu S, Wang Y, Yang G, Su W et al. Quinolone-resistant Escherichia coli O127a:K63 serotype with an extended-spectrum-beta-lactamase phenotype from a food poisoning outbreak in China. J Clin Microbiol 2012;50:2450–2451 [CrossRef]
    [Google Scholar]
  29. Vieira MA, Dos Santos LF, Dias RC, Camargo CH, Pinheiro SR et al. Atypical enteropathogenic Escherichia coli as aetiologic agents of sporadic and outbreak-associated diarrhoea in Brazil. J Med Microbiol 2016;65:998–1006 [CrossRef]
    [Google Scholar]
  30. Knutton S, Baldwin T, Williams PH, McNeish AS. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 1989;57:1290–1298
    [Google Scholar]
  31. Rosenshine I, Duronio V, Finlay BB. Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells. Infect Immun 1992;60:2211–2217
    [Google Scholar]
  32. Ogura Y, Ooka T, Whale A, Garmendia J, Beutin L et al. TccP2 of O157:H7 and non-O157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerization. Infect Immun 2007;75:604–612 [CrossRef]
    [Google Scholar]
  33. Madic J, de Garam CP, Brugère H, Loukiadis E, Fach P et al. Duplex real-time PCR detection of type III effector tccP and tccP2 genes in pathogenic Escherichia coli and prevalence in raw milk cheeses. Lett Appl Microbiol 2011;52:538–545 [CrossRef]
    [Google Scholar]
  34. Pelayo JS, Scaletsky IC, Pedroso MZ, Sperandio V, Girón JA et al. Virulence properties of atypical EPEC strains. J Med Microbiol 1999;48:41–49 [CrossRef]
    [Google Scholar]
  35. Carvalho HM, Teel LD, Kokai-Kun JF, O'Brien AD. Antibody against the carboxyl terminus of intimin alpha reduces enteropathogenic Escherichia coli adherence to tissue culture cells and subsequent induction of actin polymerization. Infect Immun 2005;73:2541–2546 [CrossRef]
    [Google Scholar]
  36. Hebbelstrup Jensen B, Olsen KE, Struve C, Krogfelt KA, Petersen AM. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 2014;27:614–630 [CrossRef]
    [Google Scholar]
  37. Jønsson R, Liu B, Struve C, Yang Y, Jørgensen R et al. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding. Biochim Biophys Acta 2017;1865:304–311 [CrossRef]
    [Google Scholar]
  38. Monteiro-Neto V, Bando SY, Moreira-Filho CA, Girón JA. Characterization of an outer membrane protein associated with haemagglutination and adhesive properties of enteroaggregative Escherichia coli O111:H12. Cell Microbiol 2003;5:533–547 [CrossRef]
    [Google Scholar]
  39. Barros SF, Abe CM, Rocha SP, Ruiz RM, Beutin L et al. Escherichia coli O125ac:H6 encompasses atypical enteropathogenic E. coli strains that display the aggregative adherence pattern. J Clin Microbiol 2008;46:4052–4055 [CrossRef]
    [Google Scholar]
  40. Elias WP, Barros SF, Moreira CG, Trabulsi LR, Gomes TA. Enteroaggregative Escherichia coli strains among classical enteropathogenic Escherichia coli O serogroups. J Clin Microbiol 2002;40:3540–3541 [CrossRef]
    [Google Scholar]
  41. Kobayashi RKT, Saridakis HO, Dias AMG, Vidotto MC. Molecular identification of enteropathogenic Escherichia coli (EPEC) associated with infant diarrhea in Londrina, Parana, Brazil. Braz J Microbiol 2000;31:275–280 [CrossRef]
    [Google Scholar]
  42. Keller R, Ordoñez JG, de Oliveira RR, Trabulsi LR, Baldwin TJ et al. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli. Infect Immun 2002;70:2681–2689 [CrossRef]
    [Google Scholar]
  43. Girão DM, Girão VB, Irino K, Gomes TA. Classifying Escherichia coli. Emerg Infect Dis 2006;12:1297–1299 [CrossRef]
    [Google Scholar]
  44. Gomes TA, Hernandes RT, Torres AG, Salvador FA, Guth BE et al. Adhesin-encoding genes from shiga toxin-producing Escherichia coli are more prevalent in atypical than in typical enteropathogenic E. coli. J Clin Microbiol 2011;49:3334–3337 [CrossRef]
    [Google Scholar]
  45. Garcia BG, Ooka T, Gotoh Y, Vieira MA, Yamamoto D et al. Genetic relatedness and virulence properties of enteropathogenic Escherichia coli strains of serotype O119:H6 expressing localized adherence or localized and aggregative adherence-like patterns on HeLa cells. Int J Med Microbiol 2016;306:152–164 [CrossRef]
    [Google Scholar]
  46. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998;11:142–201 [CrossRef]
    [Google Scholar]
  47. Donnenberg MS, Tacket CO, James SP, Losonsky G, Nataro JP et al. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Invest 1993;92:1412–1417 [CrossRef]
    [Google Scholar]
  48. Scaletsky IC, Pedroso MZ, Oliva CA, Carvalho RL, Morais MB et al. A localized adherence-like pattern as a second pattern of adherence of classic enteropathogenic Escherichia coli to HEp-2 cells that is associated with infantile diarrhea. Infect Immun 1999;67:3410–3415
    [Google Scholar]
  49. Bai L, Schüller S, Whale A, Mousnier A, Marches O et al. Enteropathogenic Escherichia coli O125:H6 triggers attaching and effacing lesions on human intestinal biopsy specimens independently of Nck and TccP/TccP2. Infect Immun 2008;76:361–368 [CrossRef]
    [Google Scholar]
  50. Moreira FC, Vieira MA, Ferreira AJ, Girão DM, Vaz TM et al. Escherichia coli strains of serotype O51:H40 comprise typical and atypical enteropathogenic E. coli strains and are potentially diarrheagenic. J Clin Microbiol 2008;46:1462–1465 [CrossRef]
    [Google Scholar]
  51. Garmendia J, Ren Z, Tennant S, Midolli Viera MA, Chong Y et al. Distribution of tccP in clinical enterohemorrhagic and enteropathogenic Escherichia coli isolates. J Clin Microbiol 2005;43:5715–5720 [CrossRef]
    [Google Scholar]
  52. Martins FH, Nepomuceno R, Piazza RMF, Elias WP. Phylogenetic distribution of tir-cytoskeleton coupling protein (tccP and tccP2) genes in atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett 2017;364: [CrossRef]
    [Google Scholar]
  53. Hazen TH, Sahl JW, Fraser CM, Donnenberg MS, Scheutz F et al. Refining the pathovar paradigm via phylogenomics of the attaching and effacing Escherichia coli. Proc Natl Acad Sci USA 2013;110:12810–12815 [CrossRef]
    [Google Scholar]
  54. Chaudhuri RR, Henderson IR. The evolution of the Escherichia coli phylogeny. Infect Genet Evol 2012;12:214–226 [CrossRef]
    [Google Scholar]
  55. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013;5:58–65 [CrossRef]
    [Google Scholar]
  56. Whale AD, Garmendia J, Gomes TA, Frankel G. A novel category of enteropathogenic Escherichia coli simultaneously utilizes the Nck and TccP pathways to induce actin remodelling. Cell Microbiol 2006;8:999–1008 [CrossRef]
    [Google Scholar]
  57. Kozub-Witkowski E, Krause G, Frankel G, Kramer D, Appel B et al. Serotypes and virutypes of enteropathogenic and enterohaemorrhagic Escherichia coli strains from stool samples of children with diarrhoea in Germany. J Appl Microbiol 2008;104:403–410
    [Google Scholar]
  58. Rocha SP, Abe CM, Sperandio V, Bando SY, Elias WP. Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells. Infect Immun 2011;79:1833–1841 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000998
Loading
/content/journal/jmm/10.1099/jmm.0.000998
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error