1887

Abstract

. Syphilis, caused by , is considered as an old disease affecting humans; traces of such infections, including congenital syphilis, are potentially identifiable in archaeological samples. The aim of this research was to perform macroscopic and molecular investigations of on six infant remains, buried between 1837 and 1867, from the cemetery of ‘Les Crottes’ in Marseille city (southeastern France).

. Pathological analysis of bones from individuals, aged from the twenty-ninth week of amenorrhea to 4–9 months, was performed. Samples served also as a source of ancient DNA (aDNA) for PCR-based molecular investigations targeting DNA; all samples were also tested for and DNA. Sequences characterized were cloned and sequenced, and compared to those available in databases.

. All samples tested displayed widespread osteoporotic lesions across the skeleton possibly related to some metabolic or infectious disorders. Subsequent molecular analysis revealed that one individual, SP332 (unborn, 29 amenorrhea weeks, inhumation date 1864–1866), exhibited positive signals for the five amplification systems tested; sequence analysis provided strong evidence for the effective detection of DNA.

. Individual SP332 is the first PCR-confirmed palaeopathological case of syphilis identified in France, and the youngest specimen ever to be diagnosed with certainty for congenital syphilis. Future research aimed at better characterizing this 150-year-old treponeme genome and exploring new archaelogical cases of syphilis in the very young should contribute to a better comprehension of the disease's history.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000978
2019-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/5/761.html?itemId=/content/journal/jmm/10.1099/jmm.0.000978&mimeType=html&fmt=ahah

References

  1. Norris SJ, Paster BJ, Moter A, Göbel UB. The genus treponema. The prokaryotes Springer; 2006 pp 211–234
    [Google Scholar]
  2. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281:375–388 [View Article]
    [Google Scholar]
  3. Mikalová L, Strouhal M, Oppelt J, Grange PA, Janier M et al. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively. PLoS Negl Trop Dis 2017; 11:e0005434 [View Article]
    [Google Scholar]
  4. Ortner DJ. Identification of pathological conditions in human skeletal remains Academic Press; 2003
    [Google Scholar]
  5. Kolman CJ, Centurion-Lara A, Lukehart SA, Owsley DW, Tuross N. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J Infect Dis 1999; 180:2060–2063 [View Article]
    [Google Scholar]
  6. Bouwman AS, Brown TA. The limits of biomolecular palaeopathology: ancient DNA cannot be used to study venereal syphilis. J Archaeol Sci 2005; 32:703–713 [View Article]
    [Google Scholar]
  7. Barnes I, Thomas MG. Evaluating bacterial pathogen DNA preservation in museum osteological collections. Proc Biol Sci 2006; 273:645–653 [View Article]
    [Google Scholar]
  8. Von Hunnius TE, Yang D, Eng B, Waye JS, Saunders SR. Digging deeper into the limits of ancient DNA research on syphilis. J Archaeol Sci 2007; 34:2091–2100 [View Article]
    [Google Scholar]
  9. Montiel R, Solórzano E, Díaz N, Álvarez-Sandoval BA, González-Ruiz M et al. Neonate human remains: a window of opportunity to the molecular study of ancient syphilis. PLoS One 2012; 7:e36371 [View Article]
    [Google Scholar]
  10. Schuenemann VJ, Kumar Lankapalli A, Barquera R, Nelson EA, Iraíz Hernández D et al. Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Negl Trop Dis 2018; 12:e0006447 [View Article]
    [Google Scholar]
  11. Gogarten JF, Düx A, Schuenemann VJ, Nowak K, Boesch C et al. Tools for opening new chapters in the book of Treponema pallidum evolutionary history. Clin Microbiol Infect 2016; 22:916–921 [View Article]
    [Google Scholar]
  12. Richier A, Weydert N. Prolongement de la ligne 2 du métro de Bougainville vers Capitaine Gèze - 72 avenue Félix Zoccola. Ancien cimetière des Crottes : Rapport Final d'Opération Nîmes: INRAP Méditerannée; 2016
    [Google Scholar]
  13. Bau E, Ardagna Y, Pouget B. Prises en charge des syphilitiques dans les hôpitaux marseillais au XIXème siècle. Villes, Sociétés Urbaines et Syphilis en méditerranée et au-del (XVIe-XXIe siècles), 25–27 octobre 2017 Aix-Marseille Université - Faculté de Médecine; 2017
    [Google Scholar]
  14. Ardagna Y, Perrin M, Bouchez I, Sperandio E, Richier A. La syphilis et le littoral provençal: inférences paléopathologiques et paléoépidémiologiques. Villes, Sociétés Urbaines et Syphilis en méditerranée et au-del (XVIe-XXIe siècles), 25–27 octobre 2017 Aix-Marseille Université - Faculté de Médecine; 2017
    [Google Scholar]
  15. Richier A. Quand l'archéologie funéraire s'intéresse aux temps récents : l'exemple provençal INHA, Paris: Reugny: GAAF; 2017 pp 299–308
    [Google Scholar]
  16. Richier A. Inhumation d'un foetus en bocal Archéopages n°45 Paris: INRAP; 2018 pp 142–143
    [Google Scholar]
  17. Weston DA. Investigating the specificity of periosteal reactions in pathology museum specimens. Am J Phys Anthropol 2008; 137:48–59 [View Article]
    [Google Scholar]
  18. Weston DA. Brief communication: Paleohistopathological analysis of pathology museum specimens: can periosteal reaction microstructure explain lesion etiology?. Am J Phys Anthropol 2009; 140:186–193 [View Article]
    [Google Scholar]
  19. Aufderheide AC, Rodríguez-Martín C, Langsjoen O. The Cambridge encyclopedia of human paleopathology Cambridge University Press; 1998
    [Google Scholar]
  20. Maresh M. Measurements from roentgenograms . In McCammon R. editor Human Growth and Development Springfield: C. C. Thomas; 1970 pp 157–200
    [Google Scholar]
  21. Adalian P. Évaluation multiparamétrique de la croissance fœtale: applications la détermination de l'âge et du sexe Marseille: Université de la Méditerranée - Aix-Marseille II; 2001
    [Google Scholar]
  22. Moorrees CF, Fanning EA, Hunt EE Jr. Age variation of formation stages for ten permanent teeth. J Dent Res 1963; 42:1490–1502 [View Article]
    [Google Scholar]
  23. Ubelaker D. Human skeletal remains: excavation, analysis, interpretation Chicago: Aldine; 1978
    [Google Scholar]
  24. Orle KA, Gates CA, Martin DH, Body BA, Weiss JB. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol 1996; 34:49–54
    [Google Scholar]
  25. Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T et al. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis 2010; 202:1380–1388 [View Article]
    [Google Scholar]
  26. Dubourg G, Edouard S, Prudent E, Fournier PE, Raoult D. Incidental syphilis diagnosed by real-time PCR screening of urine samples. J Clin Microbiol 2015; 53:3707–3708 [View Article]
    [Google Scholar]
  27. Fletcher HA, Donoghue HD, Taylor GM, van der Zanden AGM, Spigelman M. Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians. Microbiology 2003; 149:143–151 [View Article]
    [Google Scholar]
  28. Taylor GM, Young DB, Mays SA. Genotypic analysis of the earliest known prehistoric case of tuberculosis in Britain. J Clin Microbiol 2005; 43:2236–2240 [View Article]
    [Google Scholar]
  29. Lalremruata A, Ball M, Bianucci R, Welte B, Nerlich AG et al. Molecular identification of falciparum malaria and human tuberculosis co-infections in mummies from the Fayum depression (lower Egypt). PLoS One 2013; 8:e60307 [View Article]
    [Google Scholar]
  30. Zobaníková M, Mikolka P, Cejková D, Pospíšilová P, Chen L et al. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci 2012; 7:12–21 [View Article]
    [Google Scholar]
  31. Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P et al. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis 2012; 6:e1832 [View Article]
    [Google Scholar]
  32. Giacani L, Iverson-Cabral SL, King JC, Molini BJ, Lukehart SA et al. Complete genome sequence of the Treponema pallidum subsp. pallidum Sea81-4 strain. Genome Announc 2014; 2:e00333–00314 [View Article]
    [Google Scholar]
  33. Matejková P, Strouhal M, Smajs D, Norris SJ, Palzkill T et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 2008; 8:76 [View Article]
    [Google Scholar]
  34. Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA et al. Complete genome sequence and annotation of the Treponema pallidum subsp. pallidum Chicago strain. J Bacteriol 2010; 192:2645–2646 [View Article]
    [Google Scholar]
  35. Cejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis 2012; 6:e1471 [View Article]
    [Google Scholar]
  36. Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrožová L et al. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis 2013; 7:e2172 [View Article]
    [Google Scholar]
  37. Štaudová B, Strouhal M, Zobaníková M, Čejková D, Fulton LL et al. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis 2014; 8:e3261 [View Article]
    [Google Scholar]
  38. Read P, Tagg KA, Jeoffreys N, Guy RJ, Gilbert GL et al. Treponema pallidum strain types and association with macrolide resistance in Sydney, Australia: new TP0548 gene types identified. J Clin Microbiol 2016; 54:2172–2174 [View Article]
    [Google Scholar]
  39. Li Z, Wang C, Xiao H, Zhao W, Li Z et al. Enhanced molecular typing of Treponema pallidum identified a new tp0548 Gene type in Shandong, China. APMIS 2017; 125:937–939 [View Article]
    [Google Scholar]
  40. Centurion-Lara A, Castro C, Castillo R, Shaffer JM, Van Voorhis WC et al. The flanking region sequences of the 15-kDa lipoprotein gene differentiate pathogenic treponemes. J Infect Dis 1998; 177:1036–1040 [View Article]
    [Google Scholar]
  41. Nechvátal L, Pětrošová H, Grillová L, Pospíšilová P, Mikalová L et al. Syphilis-causing strains belong to separate SS14-like or Nichols-like groups as defined by multilocus analysis of 19 Treponema pallidum strains. Int J Med Microbiol 2014; 304:645–653 [View Article]
    [Google Scholar]
  42. Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2017; 2:16245 [View Article]
    [Google Scholar]
  43. Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science 2000; 289:1139 [View Article]
    [Google Scholar]
  44. de Melo FL, de Mello JCM, Fraga AM, Nunes K, Eggers S. Syphilis at the crossroad of phylogenetics and paleopathology. PLoS Negl Trop Dis 2010; 4:e575 [View Article]
    [Google Scholar]
  45. Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D et al. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis 2017; 11:e0005894 [View Article]
    [Google Scholar]
  46. Šmajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol 2012; 12:191–202 [View Article]
    [Google Scholar]
  47. Warinner C, Herbig A, Mann A, Fellows Yates JA, Weiß CL et al. A robust framework for microbial archaeology. Annu Rev Genomics Hum Genet 2017; 18:321–356 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000978
Loading
/content/journal/jmm/10.1099/jmm.0.000978
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error