1887

Abstract

Antibiotic-resistant genes (ARGs) are regarded as emerging environmental pollutants and pose a serious health risk to the human population. Integrons are genetic elements that are involved in the spread of ARGs amongst bacterial species. They also act as reservoirs of these resistance traits, further contributing to the development of multi-drug resistance in several water-borne pathogens. Due to inter- and intra-species transfer, integrons are now commonly reported in important water-borne pathogens such as , , , , and other opportunistic pathogens. These pathogens exhibit immense diversity in their resistance gene cassettes. The evolution of multiple novel and complex gene cassettes in integrons further suggests the selection and horizontal transfer of ARGs in multi-drug resistant bacteria. Thus, the detection and characterization of these integrons in water-borne pathogens, especially in epidemic and pandemic strains, is of the utmost importance. It will provide a framework in which health authorities can conduct improved surveillance of antibiotic resistance in our natural water bodies. Such a study will also be helpful in developing better strategies for the containment and cure of infections caused by these bacteria.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000972
2019-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/5/679.html?itemId=/content/journal/jmm/10.1099/jmm.0.000972&mimeType=html&fmt=ahah

References

  1. Chen B, Zheng W, Yu Y, Huang W, Zheng S et al. Class 1 integrons, selected virulence genes, and antibiotic resistance in Escherichia coli isolates from the Minjiang river, Fujian Province, China. Appl Environ Microbiol 2011;77:148–155 [CrossRef]
    [Google Scholar]
  2. Koczura R, Mokracka J, Jabłońska L, Gozdecka E, Kubek M et al. Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. Sci Total Environ 2012;414:680–685 [CrossRef]
    [Google Scholar]
  3. Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol 2012;3:18 [CrossRef]
    [Google Scholar]
  4. Rice LB. The clinical consequences of antimicrobial resistance. Curr Opin Microbiol 2009;12:476–481 [CrossRef]
    [Google Scholar]
  5. Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 2009;33:757–784 [CrossRef]
    [Google Scholar]
  6. Domingues S, da Silva GJ, Nielsen KM. Integrons: vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elem 2012;2:211–223
    [Google Scholar]
  7. Fluit AC, Schmitz FJ. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 1999;18:761–770 [CrossRef]
    [Google Scholar]
  8. Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012;3:119 [CrossRef]
    [Google Scholar]
  9. Cambray G, Guerout AM, Mazel D. Integrons. Annu Rev Genet 2010;44:141–166 [CrossRef]
    [Google Scholar]
  10. Rosser SJ, Young HK. Identification and characterization of class 1 integrons in bacteria from an aquatic environment. J Antimicrob Chemother 1999;44:11–18 [CrossRef]
    [Google Scholar]
  11. Márquez C, Labbate M, Raymondo C, Fernández J, Gestal AM et al. Urinary tract infections in a South American population: dynamic spread of class 1 integrons and multidrug resistance by homologous and site-specific recombination. J Clin Microbiol 2008;46:3417–3425 [CrossRef]
    [Google Scholar]
  12. Poirel L, Carattoli A, Bernabeu S, Bruderer T, Frei R et al. A novel IncQ plasmid type harbouring a class 3 integron from Escherichia coli. J Antimicrob Chemother 2010;65:1594–1598 [CrossRef]
    [Google Scholar]
  13. Simo Tchuinte PL, Stalder T, Venditti S, Ngandjio A, Dagot C et al. Characterisation of class 3 integrons with oxacillinase gene cassettes in hospital sewage and sludge samples from France and Luxembourg. Int J Antimicrob Agents 2016;48:431–434 [CrossRef]
    [Google Scholar]
  14. Sørum H, Roberts MC, Crosa JH. Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida. Antimicrob Agents Chemother 1992;36:611–615 [CrossRef]
    [Google Scholar]
  15. Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R et al. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 2001;45:2991–3000 [CrossRef]
    [Google Scholar]
  16. Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol 2006;4:608–620 [CrossRef]
    [Google Scholar]
  17. Henriques IS, Fonseca F, Alves A, Saavedra MJ, Correia A. Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters. Res Microbiol 2006;157:938–947 [CrossRef]
    [Google Scholar]
  18. Laroche E, Pawlak B, Berthe T, Skurnik D, Petit F. Occurrence of antibiotic resistance and class 1, 2 and 3 integrons in Escherichia coli isolated from a densely populated estuary (Seine, France). FEMS Microbiol Ecol 2009;68:118–130 [CrossRef]
    [Google Scholar]
  19. Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011;35:790–819 [CrossRef]
    [Google Scholar]
  20. Moura A, Soares M, Pereira C, Leitão N, Henriques I et al. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 2009;25:1096–1098 [CrossRef]
    [Google Scholar]
  21. WHO Preventing Diarrhoea Through Better Water, Sanitation and Hygiene World Health Organization; 2014
    [Google Scholar]
  22. Tello A, Austin B, Telfer TC. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ Health Perspect 2012;120:1100–1106 [CrossRef]
    [Google Scholar]
  23. Boucher Y, Labbate M, Koenig JE, Stokes HW. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 2007;15:301–309 [CrossRef]
    [Google Scholar]
  24. Tamrakar AK, Jain M, Goel AK, Kamboj DV, Singh L. Characterization of Vibrio cholerae from deep ground water in a cholera endemic area in Central India. Indian J Microbiol 2009;49:271–275 [CrossRef]
    [Google Scholar]
  25. Lekshmi N, Joseph I, Ramamurthy T, Thomas S. Changing facades of Vibrio cholerae: An enigma in the epidemiology of cholera. Indian J Med Res 2018;147:133–141
    [Google Scholar]
  26. Ramamurthy T, Garg S, Sharma R, Bhattacharya SK, Nair GB et al. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 1993;341:703–704 [CrossRef]
    [Google Scholar]
  27. Faruque SM, Sack DA, Sack RB, Colwell RR, Takeda Y et al. Emergence and evolution of Vibrio cholerae O139. Proc Natl Acad Sci USA 2003;100:1304–1309 [CrossRef]
    [Google Scholar]
  28. Glass RI, Huq I, Alim AR, Yunus M. Emergence of multiply antibiotic-resistant Vibrio cholerae in Bangladesh. J Infect Dis 1980;142:939–942 [CrossRef]
    [Google Scholar]
  29. Kitaoka M, Miyata ST, Unterweger D, Pukatzki S. Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 2011;60:397–407 [CrossRef]
    [Google Scholar]
  30. Falbo V, Carattoli A, Tosini F, Pezzella C, Dionisi AM et al. Antibiotic resistance conferred by a conjugative plasmid and a class I integron in Vibrio cholerae O1 El Tor strains isolated in Albania and Italy. Antimicrob Agents Chemother 1999;43:693–696 [CrossRef]
    [Google Scholar]
  31. Ceccarelli D, Salvia AM, Sami J, Cappuccinelli P, Colombo MM. New cluster of plasmid-located class 1 integrons in Vibrio cholerae O1 and a dfrA15 cassette-containing integron in Vibrio parahaemolyticus isolated in Angola. Antimicrob Agents Chemother 2006;50:2493–2499 [CrossRef]
    [Google Scholar]
  32. Shi L, Fujihara K, Sato T, Ito H, Garg P. Distribution and characterization of integrons in various serogroups of Vibrio cholerae strains isolated from diarrhoeal patients between 1992 and 2000 in Kolkata, India. J Med Microbiol 2006;55:575–583 [CrossRef]
    [Google Scholar]
  33. Ahmed AM, Kawaguchi F, Shimamoto T. Class 2 integrons in Vibrio cholerae. J Med Microbiol 2006;55:643–644 [CrossRef]
    [Google Scholar]
  34. Opintan JA, Newman MJ, Nsiah-Poodoh OA, Okeke IN. Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element. J Antimicrob Chemother 2008;62:929–933 [CrossRef]
    [Google Scholar]
  35. Carraro N, Rivard N, Burrus V, Ceccarelli D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob Genet Elements 2017;7:1–6 [CrossRef]
    [Google Scholar]
  36. Carraro N, Rivard N, Ceccarelli D, Colwell RR, Burrus V. IncA/C conjugative plasmids mobilize a new family of multidrug resistance islands in clinical Vibrio cholerae Non-O1/Non-O139 isolates from Haiti. MBio 2016;7:e00509–00516 [CrossRef]
    [Google Scholar]
  37. Gupta A, Nelson JM, Barrett TJ, Tauxe RV, Rossiter SP et al. Antimicrobial resistance among Campylobacter strains, United States, 1997–2001. Emerg Infect Dis 2004;10:1102–1109 [CrossRef]
    [Google Scholar]
  38. Wang Y, Zhang M, Deng F, Shen Z, Wu C et al. Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob Agents Chemother 2014;58:5405–5412 [CrossRef]
    [Google Scholar]
  39. Lee MD, Sanchez S, Zimmer M, Idris U, Berrang ME et al. Class 1 integron-associated tobramycin-gentamicin resistance in Campylobacter jejuni isolated from the broiler chicken house environment. Antimicrob Agents Chemother 2002;46:3660–3664 [CrossRef]
    [Google Scholar]
  40. Chang YC, Tien N, Yang JS, Lu CC, Tsai FJ et al. Class 1 integrons and plasmid-mediated multiple resistance genes of the Campylobacter species from pediatric patient of a university hospital in Taiwan. Gut Pathog 2017;9:9–50 [CrossRef]
    [Google Scholar]
  41. Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S et al. Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Res Int 2012;45:587–602 [CrossRef]
    [Google Scholar]
  42. Mølbak K. Human health consequences of antimicrobial drug-resistant Salmonella and other foodborne pathogens. Clin Infect Dis 2005;41:1613–1620
    [Google Scholar]
  43. Das S, Samajpati S, Ray U, Roy I, Dutta S. Antimicrobial resistance and molecular subtypes of Salmonella enterica serovar Typhi isolates from Kolkata, India over a 15 years period 1998–2012. Int J Med Microbiol 2017;307:28–36 [CrossRef]
    [Google Scholar]
  44. Argüello H, Guerra B, Rodríguez I, Rubio P, Carvajal A. Characterization of antimicrobial resistance determinants and class 1 and class 2 integrons in Salmonella enterica spp., multidrug-resistant isolates from pigs. Genes 2018;9:256 [CrossRef]
    [Google Scholar]
  45. Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K et al. Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio 2018;9:e00105–00118 [CrossRef]
    [Google Scholar]
  46. Kaushik M, Kumar S, Kapoor RK, Virdi JS, Gulati P. Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2018;51:167–176 [CrossRef]
    [Google Scholar]
  47. Boyd DA, Peters GA, Ng L, Mulvey MR. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol Lett 2000;189:285–291 [CrossRef]
    [Google Scholar]
  48. Doublet B, Boyd D, Mulvey MR, Cloeckaert A. The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol 2005;55:1911–1924 [CrossRef]
    [Google Scholar]
  49. Levings RS, Djordjevic SP, Hall RM. SGI2, a relative of Salmonella genomic island SGI1 with an independent origin. Antimicrob Agents Chemother 2008;52:2529–2537 [CrossRef]
    [Google Scholar]
  50. Hall RM. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol 2010;5:1525–1538 [CrossRef]
    [Google Scholar]
  51. Miko A, Pries K, Schroeter A, Helmuth R. Multiple-drug resistance in D-tartrate-positive Salmonella enterica serovar paratyphi B isolates from poultry is mediated by class 2 integrons inserted into the bacterial chromosome. Antimicrob Agents Chemother 2003;47:3640–3643 [CrossRef]
    [Google Scholar]
  52. Doublet B, Praud K, Nguyen-Ho-Bao T, Argudín MA, Bertrand S et al. Extended-spectrum β-lactamase- and AmpC β-lactamase-producing D-tartrate-positive Salmonella enterica serovar Paratyphi B from broilers and human patients in Belgium, 2008–10. J Antimicrob Chemother 2014;69:1257–1264 [CrossRef]
    [Google Scholar]
  53. Kahsay AG, Muthupandian S. A review on sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001–2014. BMC Res Notes 2016;9:422 [CrossRef]
    [Google Scholar]
  54. Kim JS, Kim JJ, Kim SJ, Jeon SE, Seo KY et al. Outbreak of ciprofloxacin-resistant Shigella sonnei associated with travel to Vietnam, Republic of Korea. Emerg Infect Dis 2015;21:1247–1250 [CrossRef]
    [Google Scholar]
  55. Terry LM, Barker CR, Day MR, Greig DR, Dallman TJ et al. Antimicrobial resistance profiles of Shigella dysenteriae isolated from travellers returning to the UK, 2004–2017. J Med Microbiol 2018;67:1022–1030 [CrossRef]
    [Google Scholar]
  56. Heffernan H, Woodhouse R, Hewison C, Sherwood J. Antimicrobial resistance among Shigella in New Zealand. N Z Med J 2018;131:56–62
    [Google Scholar]
  57. Pan JC, Ye R, Meng DM, Zhang W, Wang HQ et al. Molecular characteristics of class 1 and class 2 integrons and their relationships to antibiotic resistance in clinical isolates of Shigella sonnei and Shigella flexneri. J Antimicrob Chemother 2006;58:288–296 [CrossRef]
    [Google Scholar]
  58. Yang H, Pan Y, Hu L, Liu Y, Ye Y et al. Antimicrobial resistance patterns and characterization of integrons in clinical isolates of Shigella from China. Can J Microbiol 2014;60:237–242 [CrossRef]
    [Google Scholar]
  59. Luck SN, Turner SA, Rajakumar K, Sakellaris H, Adler B. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect Immun 2001;69:6012–6021 [CrossRef]
    [Google Scholar]
  60. Zhu JY, Duan GC, Yang HY, Fan QT, Xi YL. Atypical class 1 integron coexists with class 1 and class 2 integrons in multi-drug resistant Shigella flexneri isolates from China. Curr Microbiol 2011;62:802–806 [CrossRef]
    [Google Scholar]
  61. Ranjbar R, Aleo A, Giammanco GM, Dionisi AM, Sadeghifard N et al. Genetic relatedness among isolates of Shigella sonnei carrying class 2 integrons in Tehran, Iran, 2002–2003. BMC Infect Dis 2007;7:62 [CrossRef]
    [Google Scholar]
  62. Gassama-Sow A, Diallo MH, Boye CS, Garin B, Sire JM et al. Class 2 integron-associated antibiotic resistance in Shigella sonnei isolates in Dakar, Senegal. Int J Antimicrob Agents 2006;27:267–270 [CrossRef]
    [Google Scholar]
  63. Zhao S, White DG, Ge B, Ayers S, Friedman S et al. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol 2001;67:1558–1564 [CrossRef]
    [Google Scholar]
  64. Bopp DJ, Sauders BD, Waring AL, Ackelsberg J, Dumas N et al. Detection, isolation, and molecular subtyping of Escherichia coli O157:H7 and Campylobacter jejuni associated with a large waterborne outbreak. J Clin Microbiol 2003;41:174–180 [CrossRef]
    [Google Scholar]
  65. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 1998;11:450–479 [CrossRef]
    [Google Scholar]
  66. Van Meervenne E, Boon N, Verstraete K, Devlieghere F, De Reu K et al. Integron characterization and typing of Shiga toxin-producing Escherichia coli isolates in Belgium. J Med Microbiol 2013;62:712–719 [CrossRef]
    [Google Scholar]
  67. Ahmed AM, Shimamoto T. Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157:H7 isolated from meat and dairy products. Int J Food Microbiol 2015;193:68–73 [CrossRef]
    [Google Scholar]
  68. Ahmed AM, Kawamoto H, Inouye K, Hashiwata Y, Sakaki M. Genomic analysis of a multidrug-resistant strain of enterohaemorrhagic Escherichia coli O157:H7 causing a family outbreak in Japan. J Med Microbiol 2005;54:867–872 [CrossRef]
    [Google Scholar]
  69. Nagachinta S, Chen J. Transfer of class 1 integron-mediated antibiotic resistance genes from shiga toxin-producing Escherichia coli to a susceptible E. coli K-12 strain in storm water and bovine feces. Appl Environ Microbiol 2008;74:5063–5067 [CrossRef]
    [Google Scholar]
  70. Kennedy C-A, Fanning S, Karczmarczyk M, Byrne B, Monaghan Á et al. Characterizing the multidrug resistance of non-O157 Shiga toxin-producing Escherichia coli isolates from cattle farms and abattoirs. Microb Drug Resist 2017;23:781–790 [CrossRef]
    [Google Scholar]
  71. Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 2009;58:1133–1148 [CrossRef]
    [Google Scholar]
  72. Lee CR, Lee JH, Park M, Park KS, Bae IK et al. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 2017;7:55 [CrossRef]
    [Google Scholar]
  73. Kumar A, Mukherjee S, Chakraborty R. Characterization of a novel trimethoprim resistance gene, dfrA28, in Class 1 integron of an oligotrophic Acinetobacter johnsonii strain, MB52, isolated from River Mahananda, India. Microbial Drug Resistance 2010;16:29–37 [CrossRef]
    [Google Scholar]
  74. Hossain S, De Silva BCJ, Wimalasena S, Pathirana H, Dahanayake PS et al. Distribution of antimicrobial resistance genes and class 1 integron gene cassette arrays in motile Aeromonas spp. isolated from goldfish (Carassius auratus). Microb Drug Resist 2018
    [Google Scholar]
  75. Moura A, Henriques I, Ribeiro R, Correia A. Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. J Antimicrob Chemother 2007;60:1243–1250 [CrossRef]
    [Google Scholar]
  76. Martins N, Picão RC, Adams-Sapper S, Riley LW, Moreira BM. Association of class 1 and 2 integrons with multidrug-resistant Acinetobacter baumannii international clones and Acinetobacter nosocomialis isolates. Antimicrob Agents Chemother 2015;59:698–701 [CrossRef]
    [Google Scholar]
  77. Koczura R, Semkowska A, Mokracka J. Integron-bearing Gram-negative bacteria in lake waters. Lett Appl Microbiol 2014;59:514–519 [CrossRef]
    [Google Scholar]
  78. Rojo-Bezares B, Estepa V, Cebollada R, de Toro M, Somalo S et al. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons. Int J Med Microbiol 2014;304:405–414 [CrossRef]
    [Google Scholar]
  79. Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying bla IMP-6 and emergence of bla GES-24 and bla IMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother 2016;60:7216–7223
    [Google Scholar]
  80. Yamamoto M, Matsumura Y, Gomi R, Matsuda T, Nakano S et al. Molecular analysis of a bla IMP-1 -harboring class 3 integron in multidrug-resistant Pseudomonas fulva. Antimicrob Agents Chemother 2018;62:e00701–00718 [CrossRef]
    [Google Scholar]
  81. Gibreel A, Sköld O. High-level resistance to trimethoprim in clinical isolates of Campylobacter jejuni by acquisition of foreign genes (DFR1 and dfr9) expressing drug-insensitive dihydrofolate reductases. Antimicrob Agents Chemother 1998;42:3059–3064 [CrossRef]
    [Google Scholar]
  82. O'Halloran F, Lucey B, Cryan B, Buckley T, Fanning S. Molecular characterization of class 1 integrons from Irish thermophilic Campylobacter spp. J Antimicrob Chemother 2004;53:952–957 [CrossRef]
    [Google Scholar]
  83. Ploy MC, Chainier D, Tran Thi NH, Poilane I, Cruaud P et al. Integron-associated antibiotic resistance in Salmonella enterica serovar typhi from Asia. Antimicrob Agents Chemother 2003;47:1427–1429 [CrossRef]
    [Google Scholar]
  84. Mukherjee S, Chakraborty R. Incidence of class 1 integrons in multiple antibiotic-resistant Gram-negative copiotrophic bacteria from the River Torsa in India. Res Microbiol 2006;157:220–226 [CrossRef]
    [Google Scholar]
  85. Ma L, Zhang XX, Zhao F, Wu B, Cheng S et al. Sewage treatment plant serves as a hot-spot reservoir of integrons and gene cassettes. J Environ Biol 2013;34:391–399
    [Google Scholar]
  86. Kotlarska E, Łuczkiewicz A, Pisowacka M, Burzyński A. Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from two wastewater treatment plants, and their receiving waters (Gulf of Gdansk, Baltic Sea, Poland). Environ Sci Pollut Res Int 2015;22:2018–2030 [CrossRef]
    [Google Scholar]
  87. Levesque C, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995;39:185–191 [CrossRef]
    [Google Scholar]
  88. Mazel D, Dychinco B, Webb VA, Davies J. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 2000;44:1568–1574 [CrossRef]
    [Google Scholar]
  89. Dillon B, Thomas L, Mohmand G, Zelynski A, Iredell J. Multiplex PCR for screening of integrons in bacterial lysates. J Microbiol Methods 2005;62:221–232 [CrossRef]
    [Google Scholar]
  90. Koeleman JGM, Stoof J, Van der Bijl MW, Vandenbroucke-Grauls CMJE, Savelkoul PHM. Identification of epidemic strains of Acinetobacter baumannii by integrase gene PCR. J Clin Microbiol 2001;39:8–13 [CrossRef]
    [Google Scholar]
  91. Lee MF, Peng CF, Hsu HJ, Toh HS. Use of inverse PCR for analysis of class 1 integrons carrying an unusual 3′ conserved segment structure. Antimicrob Agents Chemother 2011;55:943–945 [CrossRef]
    [Google Scholar]
  92. DeLappe N, O'Halloran F, Fanning S, Corbett-Feeney G, Cheasty T et al. Antimicrobial resistance and genetic diversity of Shigella sonnei isolates from western Ireland, an area of low incidence of infection. J Clin Microbiol 2003;41:1919–1924 [CrossRef]
    [Google Scholar]
  93. Ploy MC, Denis F, Courvalin P, Lambert T. Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob Agents Chemother 2000;44:2684–2688 [CrossRef]
    [Google Scholar]
  94. Dalsgaard A, Forslund A, Serichantalergs O, Sandvang D. Distribution and content of class 1 integrons in different Vibrio cholerae O-serotype strains isolated in Thailand. Antimicrob Agents Chemother 2000;44:1315–1321 [CrossRef]
    [Google Scholar]
  95. White PA, McIver CJ, Deng YM, Rawlinson WD. Characterisation of two new gene cassettes, aadA5 and dfrA17. FEMS Microbiol Lett 2000;182:265–269 [CrossRef]
    [Google Scholar]
  96. de Toro M, Rojo-Bezares B, Vinué L, Undabeitia E, Torres C et al. In vivo selection of aac(6′)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J Antimicrob Chemother 2010;65:1945–1949 [CrossRef]
    [Google Scholar]
  97. Mooij MJ, Schouten I, Vos G, Van Belkum A, Vandenbroucke-Grauls CM et al. Class 1 integrons in ciprofloxacin-resistant Escherichia coli strains from two Dutch hospitals. Clin Microbiol Infect 2005;11:898–902 [CrossRef]
    [Google Scholar]
  98. Gassama-Sow A, Aïdara-Kane A, Raked N, Denis F, Ploy MC. Integrons in Salmonella Keurmassar, Senegal. Emerg Infect Dis 2004;10:1339–1341 [CrossRef]
    [Google Scholar]
  99. Sidjabat HE, Townsend KM, Hanson ND, Bell JM, Stokes HW et al. Identification of bla CMY-7 and associated plasmid-mediated resistance genes in multidrug-resistant Escherichia coli isolated from dogs at a veterinary teaching hospital in Australia. J Antimicrob Chemother 2006;57:840–848 [CrossRef]
    [Google Scholar]
  100. Peirano G, Agersø Y, Aarestrup FM, dos Prazeres Rodrigues D. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil. J Antimicrob Chemother 2005;55:301–305 [CrossRef]
    [Google Scholar]
  101. White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 2001;45:2658–2661 [CrossRef]
    [Google Scholar]
  102. Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B et al. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 2001;45:723–726 [CrossRef]
    [Google Scholar]
  103. Rizk DE, El-Mahdy AM. Emergence of class 1 to 3 integrons among members of Enterobacteriaceae in Egypt. Microb Pathog 2017;112:50–56 [CrossRef]
    [Google Scholar]
  104. Ndi OL, Barton MD. Incidence of class 1 integron and other antibiotic resistance determinants in Aeromonas spp. from rainbow trout farms in Australia. J Fish Dis 2011;34:589–599 [CrossRef]
    [Google Scholar]
  105. Sung JY, Oh JE. Distribution and characterization of integrons in Enterobacteriaceae isolates from chickens in Korea. J Microbiol Biotechnol 2014;24:1008–1013 [CrossRef]
    [Google Scholar]
  106. McIver CJ, White PA, Jones LA, Karagiannis T, Harkness J et al. Epidemic strains of Shigella sonnei biotype g carrying integrons. J Clin Microbiol 2002;40:1538–1540 [CrossRef]
    [Google Scholar]
  107. Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ 2005;29:151–159 [CrossRef]
    [Google Scholar]
  108. Cavicchio L, Dotto G, Giacomelli M, Giovanardi D, Grilli G et al. Class 1 and class 2 integrons in avian pathogenic Escherichia coli from poultry in Italy. Poult Sci 2015;94:1202–1208 [CrossRef]
    [Google Scholar]
  109. Skurnik D, Le Menac’h A, Zurakowski D, Mazel D, Courvalin P et al. Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. Antimicrob Agents Chemother 2005;49:3062–3065 [CrossRef]
    [Google Scholar]
  110. Barraud O, Baclet MC, Denis F, Ploy MC. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J Antimicrob Chemother 2010;65:1642–1645 [CrossRef]
    [Google Scholar]
  111. Liebana E, Clouting C, Cassar CA, Randall LP, Walker RA et al. Comparison of gyrA mutations, cyclohexane resistance, and the presence of class I integrons in Salmonella enterica from farm animals in England and Wales. J Clin Microbiol 2002;40:1481–1486 [CrossRef]
    [Google Scholar]
  112. Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015;5:770–788 [CrossRef]
    [Google Scholar]
  113. Yu G, Chen L, Lin CW, Li B, Cui H et al. Loop-mediated isothermal amplification assays for screening of bacterial integrons. Biol Res 2014;47:53 [CrossRef]
    [Google Scholar]
  114. Zhong Y, Zhong H, Deng Q, Zhou Z, Xie Y et al. Virulence and resistance on various pathogens mediated by mobile genetic integrons via high flux assays. Microb Pathog 2018;114:75–79 [CrossRef]
    [Google Scholar]
  115. Diarra MS, Silversides FG, Diarrassouba F, Pritchard J, Masson L et al. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl Environ Microbiol 2007;73:6566–6576 [CrossRef]
    [Google Scholar]
  116. Zou W, Frye JG, Chang CW, Liu J, Cerniglia CE et al. Microarray analysis of antimicrobial resistance genes in Salmonella enterica from preharvest poultry environment. J Appl Microbiol 2009;107:906–914 [CrossRef]
    [Google Scholar]
  117. Glenn LM, Lindsey RL, Frank JF, Meinersmann RJ, Englen MD et al. Analysis of antimicrobial resistance genes detected in multidrug-resistant Salmonella enterica serovar Typhimurium isolated from food animals. Microb Drug Resist 2011;17:407–418 [CrossRef]
    [Google Scholar]
  118. Bonnet C, Diarrassouba F, Brousseau R, Masson L, Topp E et al. Pathotype and antibiotic resistance gene distributions of Escherichia coli isolates from broiler chickens raised on antimicrobial-supplemented diets. Appl Environ Microbiol 2009;75:6955–6962 [CrossRef]
    [Google Scholar]
  119. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009;25:195–203 [CrossRef]
    [Google Scholar]
  120. Buermans HP, den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta 2014;1842:1932–1941 [CrossRef]
    [Google Scholar]
  121. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014;6:90 [CrossRef]
    [Google Scholar]
  122. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014;58:212–220 [CrossRef]
    [Google Scholar]
  123. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644 [CrossRef]
    [Google Scholar]
  124. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57:3348–3357 [CrossRef]
    [Google Scholar]
  125. de Man TJ, Limbago BM. SSTAR, a stand-alone easy-to-use antimicrobial resistance gene predictor. mSphere 2016;1:e00050–15 [CrossRef]
    [Google Scholar]
  126. Xavier BB, Das AJ, Cochrane G, De Ganck S, Kumar-Singh S et al. Consolidating and exploring antibiotic resistance gene data resources. J Clin Microbiol 2016;54:851–859 [CrossRef]
    [Google Scholar]
  127. McDermott PF, Tyson GH, Kabera C, Chen Y, Li C et al. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother 2016;60:5515–5520 [CrossRef]
    [Google Scholar]
  128. Zhang YY, Liang ZX, Li CS, Chang Y, Ma XQ et al. Whole-genome analysis of an extensively drug-resistant Acinetobacter baumannii strain XDR-BJ83: insights into the mechanisms of resistance of an ST368 strain from a tertiary care hospital in China. Microb Drug Resist 2018;24:1259–1270 [CrossRef]
    [Google Scholar]
  129. Moran RA, Anantham S, Holt KE, Hall RM. Prediction of antibiotic resistance from antibiotic resistance genes detected in antibiotic-resistant commensal Escherichia coli using PCR or WGS. J Antimicrob Chemother 2017;72:700–704
    [Google Scholar]
  130. Rao S, Maddox CW, Hoien-Dalen P, Lanka S, Weigel RM. Diagnostic accuracy of class 1 integron PCR method in detection of antibiotic resistance in Salmonella isolates from swine production systems. J Clin Microbiol 2008;46:916–920 [CrossRef]
    [Google Scholar]
  131. Phongpaichit S, Liamthong S, Mathew AG, Chethanond U. Prevalence of class 1 integrons in commensal Escherichia coli from pigs and pig farmers in Thailand. J Food Prot 2007;70:292–299 [CrossRef]
    [Google Scholar]
  132. Roe MT, Vega E, Pillai SD. Antimicrobial resistance markers of class 1 and class 2 integron-bearing Escherichia coli from irrigation water and sediments. Emerg Infect Dis 2003;9:822–826 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000972
Loading
/content/journal/jmm/10.1099/jmm.0.000972
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error