1887

Abstract

Madagascar has just emerged from the grip of an acute urban pneumonic plague outbreak, which began in August 2017, before the usual plague season of October–April and outside the traditional plague foci in the northern and central highlands. The World Health Organization reported a total of 2417 confirmed, probable and suspected cases, including 209 deaths between 1 August and 26 November 2017. The severity and scope of this outbreak, which has affected those in higher socioeconomic groups as well as those living in poverty, along with factors including the potential for use of multi-drug-resistant strains of plague in bioterrorism, highlights the ongoing threat posed by this ancient disease. Factors likely to have contributed to transmission include human behaviour, including burial practices and movement of people, poor urban planning leading to overcrowding and ready transmission by airborne droplets, climatic factors and genomic subtypes. The outbreak demonstrates the importance of identifying targeted pneumonic plague therapies and of developing vaccines that can be administered in planned programmes in developing countries such as Madagascar where plague is endemic. The dominance of pneumonic plague in this outbreak suggests that we need to focus more urgently on the danger of person-to-person transmission, as well as the problem of transmission of plague from zoonotic sources.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000915
2019-01-11
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/3/292.html?itemId=/content/journal/jmm/10.1099/jmm.0.000915&mimeType=html&fmt=ahah

References

  1. Boyce JM, Butler T. Yersinia species (including plague). In Mandell GL, Bennett JE. (editors) Principles and Practice of Infectious Diseases, 4th ed. New York: Churchill Livingstone; 1995 pp. 2070–2078
    [Google Scholar]
  2. Little LK. Plague and the End of Antiquity: The Pandemic of 541-750 New York: Cambridge University Press; 2007
    [Google Scholar]
  3. Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E et al. Plague: past, present, and future. PLoS Med 2008; 5:e3 [View Article][PubMed]
    [Google Scholar]
  4. Perry RD, Fetherston JD. Yersinia pestis-etiologic agent of plague. Clin Microbiol Rev 1997; 10:35–66 [View Article][PubMed]
    [Google Scholar]
  5. Grácio A, Grácio MAA. Plague: A Millenary Infectious Disease Reemerging in the XXI Century. Biomed Res Int 2017; 2017:1–8 [View Article][PubMed]
    [Google Scholar]
  6. World Health Organization (WHO) Plague Fact sheet. Updated October 2017. http://www.who.int/mediacentre/factsheets/fs267/en/
  7. Riedel S. Plague: from natural disease to bioterrorism. Proc 2005; 18:116–124 [View Article][PubMed]
    [Google Scholar]
  8. Andrianaivoarimanana V, Kreppel K, Elissa N, Duplantier JM, Carniel E et al. Understanding the persistence of plague foci in Madagascar. PLoS Negl Trop Dis 2013; 7:e2382 [View Article][PubMed]
    [Google Scholar]
  9. Buhnerkempe MG, Eisen RJ, Goodell B, Gage KL, Antolin MF et al. Transmission shifts underlie variability in population responses to Yersinia pestis infection. PLoS One 2011; 6:1 [View Article][PubMed]
    [Google Scholar]
  10. World Health Organization (WHO) Madagascar Plague Outbreak: External Situation Report #14 - 4 December 2017. https://reliefweb.int/report/madagascar/madagascar-plague-outbreak-external-situation-report-14-4-december-2017
  11. Vogler AJ, Andrianaivoarimanana V, Telfer S, Hall CM, Sahl JW et al. Temporal phylogeography of Yersinia pestis in Madagascar: Insights into the long-term maintenance of plague. PLoS Negl Trop Dis 2017; 11:e0005887 [View Article][PubMed]
    [Google Scholar]
  12. Andrianaivoarimanana V, Telfer S, Rajerison M, Ranjalahy MA, Andriamiarimanana F et al. Immune Responses to Plague Infection in Wild Rattus rattus, in Madagascar: A Role in Foci Persistence?. PLoS One 2012; 7:e38630 [View Article]
    [Google Scholar]
  13. Boisier P, Rahalison L, Rasolomaharo M, Ratsitorahina M, Mahafaly M et al. Epidemiologic features of four successive annual outbreaks of bubonic plague in Mahajanga, Madagascar. Emerg Infect Dis 2002; 8:311–316 [View Article][PubMed]
    [Google Scholar]
  14. World Health Organization (WHO) Plague – Madagascar: Disease outbreak news (2 November 2017). http://www.who.int/csr/don/02-november-2017-plague-madagascar/en/
  15. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 1999; 96:14043–14048 [View Article][PubMed]
    [Google Scholar]
  16. Zhou D, Han Y, Song Y, Huang P, Yang R. Comparative and evolutionary genomics of Yersinia pestis. Microb Infect 2004; 6:1226–1234
    [Google Scholar]
  17. Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D et al. Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis 2004; 10:1585–1592 [View Article][PubMed]
    [Google Scholar]
  18. Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M et al. Distinct clones of Yersinia pestis caused the black death. PLoS Pathog 2010; 6:e1001134 [View Article][PubMed]
    [Google Scholar]
  19. Kingston JJ, Tuteja U, Kapil M, Murali HS, Batra HV. Genotyping of Indian Yersinia pestis strains by MLVA and repetitive DNA sequence based PCRs. Antonie Van Leeuwenhoek 2009; 96:303–312 [View Article][PubMed]
    [Google Scholar]
  20. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P et al. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 2010; 42:1140–1143 [View Article][PubMed]
    [Google Scholar]
  21. Vogler AJ, Chan F, Nottingham R, Andersen G, Drees K et al. A decade of plague in Mahajanga, Madagascar: insights into the global maritime spread of pandemic plague. MBio 2013; 4:e0062312 [View Article][PubMed]
    [Google Scholar]
  22. Richard V, Riehm JM, Herindrainy P, Soanandrasana R, Ratsitoharina M et al. Pneumonic plague outbreak, Northern Madagascar, 2011. Emerg Infect Dis 2015; 21:8–15 [View Article][PubMed]
    [Google Scholar]
  23. Cui Y, Yu C, Yan Y, Li D, Li Y et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proceedings of the National Academy of Sciences 2013; 110:577–582 [View Article]
    [Google Scholar]
  24. Riehm JM, Projahn M, Vogler AJ, Rajerison M, Andersen G et al. Diverse Genotypes of Yersinia pestis Caused Plague in Madagascar in 2007. PLoS Negl Trop Dis 2015; 9:e0003844 [View Article][PubMed]
    [Google Scholar]
  25. Hu P, Elliott J, Mccready P, Skowronski E, Garnes J et al. Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 1998; 180:5192–5202[PubMed]
    [Google Scholar]
  26. Lindler LE, Plano GV, Burland V, Mayhew GF, Blattner FR. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun 1998; 66:5731–5742[PubMed]
    [Google Scholar]
  27. Perry RD, Straley SC, Fetherston JD, Rose DJ, Gregor J et al. DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun 1998; 66:4611–4623[PubMed]
    [Google Scholar]
  28. Cherepanov PA, Mikhaĭlova TG, Karimova GA, Zakharova Nm E IV et al. Cloning and detailed mapping of the fra-ymt region of the Yersinia pestis pFra plasmid]. Mol Gen Mikrobiol Virusol 1991; 12:19–26
    [Google Scholar]
  29. Hinnebusch BJ, Fischer ER, Schwan TG. Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J Infect Dis 1998; 178:1406–1415 [View Article][PubMed]
    [Google Scholar]
  30. Vadyvaloo V, Jarrett C, Sturdevant DE, Sebbane F, Hinnebusch BJ. Transit through the flea vector induces a pretransmission innate immunity resistance Phenotype in Yersinia pestis. PLoS Pathog 2010; 6:e1000783 [View Article][PubMed]
    [Google Scholar]
  31. Williamson ED, Oyston PC. Protecting against plague: towards a next-generation vaccine. Clin Exp Immunol 2013; 172:1–8 [View Article][PubMed]
    [Google Scholar]
  32. Marshall NC, Finlay BB. Targeting the type III secretion system to treat bacterial infections. Expert Opin Ther Targets 2014; 18:137–152 [View Article][PubMed]
    [Google Scholar]
  33. Pettersson J, Holmström A, Hill J, Leary S, Frithz-Lindsten E et al. The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol Microbiol 1999; 32:961–976 [View Article][PubMed]
    [Google Scholar]
  34. Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G. Secretion of Yop proteins by Yersiniae. Infect Immun 1990; 58:2840–2849[PubMed]
    [Google Scholar]
  35. Mueller CA, Broz P, Müller SA, Ringler P, Erne-Brand F et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 2005; 310:674–676 [View Article][PubMed]
    [Google Scholar]
  36. Kolodziejek AM, Hovde CJ, Minnich SA. Yersinia pestis Ail: multiple roles of a single protein. Front Cell Infect Microbiol 2012; 2:103 [View Article][PubMed]
    [Google Scholar]
  37. Felek S, Jeong JJ, Runco LM, Murray S, Thanassi DG et al. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence. Microbiology 2011; 157:805–818 [View Article][PubMed]
    [Google Scholar]
  38. Galván EM, Lasaro MA, Schifferli DM. Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 2008; 76:1456–1464 [View Article][PubMed]
    [Google Scholar]
  39. Hatkoff M, Runco LM, Pujol C, Jayatilaka I, Furie MB et al. Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells. Infect Immun 2012; 80:3490–3500 [View Article][PubMed]
    [Google Scholar]
  40. Ponnusamy D, Fitts EC, Sha J, Erova TE, Kozlova EV et al. High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 2015; 83:2065–2081 [View Article][PubMed]
    [Google Scholar]
  41. Bertherat E. Plague around the world, 2010–2015. Wkly Epidemiol Rec 2016; 8:89–93
    [Google Scholar]
  42. Bertherat E, Thullier P, Shako JC, England K, Koné ML et al. Lessons learned about pneumonic plague diagnosis from two outbreaks, Democratic Republic of the Congo. Emerg Infect Dis 2011; 17:778–784 [View Article][PubMed]
    [Google Scholar]
  43. Begier EM, Asiki G, Anywaine Z, Yockey B, Schriefer ME et al. Pneumonic plague cluster, Uganda, 2004. Emerg Infect Dis 2006; 12:460–467 [View Article][PubMed]
    [Google Scholar]
  44. Forrester JD, Apangu T, Griffith K, Acayo S, Yockey B et al. Patterns of Human Plague in Uganda, 2008-2016. Emerg Infect Dis 2017; 23:1517–1521 [View Article][PubMed]
    [Google Scholar]
  45. Kugeler KJ, Staples JE, Hinckley AF, Gage KL, Mead PS. Epidemiology of human plague in the United States, 1900-2012. Emerg Infect Dis 2015; 21:16–22 [View Article][PubMed]
    [Google Scholar]
  46. Moore SM, Monaghan A, Borchert JN, Mpanga JT, Atiku LA et al. Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission. Parasit Vectors 2015; 8:11 [View Article][PubMed]
    [Google Scholar]
  47. Respicio-Kingry LB, Yockey BM, Acayo S, Kaggwa J, Apangu T et al. Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda. PLoS Negl Trop Dis 2016; 10:e0004360 [View Article][PubMed]
    [Google Scholar]
  48. Walsh M, Haseeb MA. Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States. PeerJ 2015; 3:1e1493 [View Article][PubMed]
    [Google Scholar]
  49. Centers for Disease Control and Prevention (CDC) Maps and statistics. Plague in the United States. https://www.cdc.gov/plague/maps/index.html Updated October 23, 2017
  50. European Centre for Disease Prevention and Control (ECDC) Epidemiological update - Plague in Madagascar; 2017; 27 https://ecdc.europa.eu/en/news-events/epidemiological-update-plague-madagascar
  51. World Health Organization (WHO) Emergencies preparedness, response. Plague – Madagascar. Disease outbreak news. http://www.who.int/csr/don/29-september-2017-plague-madagascar/en/ 29 September 2017
  52. Migliani R, Chanteau S, Rahalison L, Ratsitorahina M, Boutin JP et al. Epidemiological trends for human plague in Madagascar during the second half of the 20th century: a survey of 20,900 notified cases. Trop Med Int Health 2006; 11:1228–1237 [View Article][PubMed]
    [Google Scholar]
  53. Vogler AJ, Chan F, Wagner DM, Roumagnac P, Lee J et al. Phylogeography and Molecular epidemiology of Yersinia pestis in Madagascar. PLoS Negl Trop Dis 2011; 5:e1319 [View Article][PubMed]
    [Google Scholar]
  54. Duplantier JM, Duchemin JB, Chanteau S, Carniel E. From the recent lessons of the Malagasy foci towards a global understanding of the factors involved in plague reemergence. Vet Res 2005; 36:437–453 [View Article][PubMed]
    [Google Scholar]
  55. Ramasindrazana B, Andrianaivoarimanana V, Rakotondramanga JM, Birdsell DN, Ratsitorahina M et al. Pneumonic Plague Transmission, Moramanga, Madagascar, 2015. Emerg Infect Dis 2017; 23:521–524 [View Article][PubMed]
    [Google Scholar]
  56. Tollenaere C, Rahalison L, Ranjalahy M, Duplantier JM, Rahelinirina S et al. Susceptibility to Yersinia pestis experimental infection in wild Rattus rattus, reservoir of plague in Madagascar. Ecohealth 2010; 7:242–247 [View Article][PubMed]
    [Google Scholar]
  57. Guardian newspaper It is a dangerous moment' 'It is a dangerous moment': Madagascar plague death toll reaches 74. https://www.theguardian.com/global-development/2017/oct/19/madagascar-plague-death-toll-reaches-74 19 October 2017
  58. Kreppel KS, Caminade C, Telfer S, Rajerison M, Rahalison L et al. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar. PLoS Negl Trop Dis 2014; 8:e3155 [View Article][PubMed]
    [Google Scholar]
  59. Ben Ari T, Gershunov A, Gage KL, Snall T, Ettestad P et al. Human plague in the USA: the importance of regional and local climate. Biol Lett 2008; 4:737–740 [View Article][PubMed]
    [Google Scholar]
  60. World Health Organization (WHO) Emergencies preparedness, response. Plague – Madagascar. Disease outbreak news; 2017; 2 http://www.who.int/csr/don/02-november-2017-plague-madagascar/en/
  61. Rajerison M, Dartevelle S, Ralafiarisoa LA, Bitam I, Dinh TN et al. Development and evaluation of two simple, rapid immunochromatographic tests for the detection of Yersinia pestis antibodies in humans and reservoirs. PLoS Negl Trop Dis 2009; 3:e421 [View Article][PubMed]
    [Google Scholar]
  62. Chanteau S, Rahalison L, Ralafiarisoa L, Foulon J, Ratsitorahina M et al. Development and testing of a rapid diagnostic test for bubonic and pneumonic plague. Lancet 2003; 361:211–216 [View Article][PubMed]
    [Google Scholar]
  63. Simon S, Demeure C, Lamourette P, Filali S, Plaisance M et al. Fast and simple detection of Yersinia pestis applicable to field investigation of plague foci. PLoS One 2013; 8:e54947 [View Article][PubMed]
    [Google Scholar]
  64. Riehm JM, Rahalison L, Scholz HC, Thoma B, Pfeffer M et al. Detection of Yersinia pestis using real-time PCR in patients with suspected bubonic plague. Mol Cell Probes 2011; 25:8–12 [View Article][PubMed]
    [Google Scholar]
  65. Souza G, Abath F, Leal N, Farias A, Almeida A. Development and evaluation of a single tube nested PCR based approach (STNPCR) for the diagnosis of plague. Adv Exp Med Biol 2007; 603:351–359 [View Article][PubMed]
    [Google Scholar]
  66. Boothby E, Shako JC, Bertherat E. Can sputum collection practices for tuberculosis improve laboratory diagnosis of pneumonic plague in developing countries?. Trop Med Int Health 2012; 17:231–234 [View Article][PubMed]
    [Google Scholar]
  67. World Health Organization (WHO) How to Safely Collect Pus Samples from Buboes of Patients Suspected to Be Infected with Bubonic Plague Geneva, Switzerland: WHO; 2016
    [Google Scholar]
  68. World Health Organization (WHO) How to Safely Collect Sputum Samples from Patients Suspected to Be Infected with Pneumonic Plague Geneva, Switzerland: WHO; 2016
    [Google Scholar]
  69. Poland JD, Dennis DT. Treatment of plague. In Epidemiology Plague Manual: Distribution, Surveillance and Control Geneva: World Health Organization; 1999 pp. 55–62
    [Google Scholar]
  70. Centers for Disease Control and Prevention (CDC) Plague. Resources for Clinicians; 2015 https://www.cdc.gov/plague/healthcare/clinicians.html
  71. European Centre for Disease Prevention and Control (ECDC) Guidance for the management of suspected pneumonic plague cases identified on aircraft and ships27 October Stockholm: ECDC; 2017
    [Google Scholar]
  72. Medicins sans Frontieres (MSF) Clinical guidelines. Chapter 7: Bacterial diseases. Plague; 2016 https://medicalguidelines.msf.org/viewport/CG/english/plague-16689935.html
  73. Louie A, Vanscoy B, Liu W, Kulawy R, Brown D et al. Comparative efficacies of candidate antibiotics against Yersinia pestis in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2011; 55:2623–2628 [View Article][PubMed]
    [Google Scholar]
  74. Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L et al. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 2001; 7:43–48 [View Article][PubMed]
    [Google Scholar]
  75. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S et al. Multidrug Resistance in Yersinia pestis Mediated by a Transferable Plasmid. N Engl J Med Overseas Ed 1997; 337:677–681 [View Article]
    [Google Scholar]
  76. Fricke WF, Welch TJ, Mcdermott PF, Mammel MK, Leclerc JE et al. Comparative genomics of the IncA/C multidrug resistance plasmid family. J Bacteriol 2009; 191:4750–4757 [View Article][PubMed]
    [Google Scholar]
  77. Hinnebusch BJ, Rosso ML, Schwan TG, Carniel E. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 2002; 46:349–354 [View Article][PubMed]
    [Google Scholar]
  78. Galimand M, Carniel E, Courvalin P. Resistance of Yersinia pestis to Antimicrobial Agents. Antimicrob Agents Chemother 2006; 50:3233–3236 [View Article][PubMed]
    [Google Scholar]
  79. Urich SK, Chalcraft L, Schriefer ME, Yockey BM, Petersen JM. Lack of antimicrobial resistance in Yersinia pestis isolates from 17 countries in the Americas, Africa, and Asia. Antimicrob Agents Chemother 2012; 56:555–558 [View Article][PubMed]
    [Google Scholar]
  80. Stirrett KL, Ferreras JA, Rossi SM, Moy RL, Fonseca FV et al. A multicopy suppressor screening approach as a means to identify antibiotic resistance determinant candidates in Yersinia pestis. BMC Microbiol 2008; 8:122 [View Article][PubMed]
    [Google Scholar]
  81. Ford DC, Ireland PM, Bullifent HL, Saint RJ, Mcalister EV et al. Construction of an inducible system for the analysis of essential genes in Yersinia pestis. J Microbiol Methods 2014; 100:1–7 [View Article][PubMed]
    [Google Scholar]
  82. van Andel R, Sherwood R, Gennings C, Lyons CR, Hutt J et al. Clinical and pathologic features of cynomolgus macaques (Macaca fascicularis) infected with aerosolized Yersinia pestis. Comp Med 2008; 58:68–75[PubMed]
    [Google Scholar]
  83. Rosenzweig JA, Brackman SM, Kirtley ML, Sha J, Erova TE et al. Cethromycin-mediated protection against the plague pathogen Yersinia pestis in a rat model of infection and comparison with levofloxacin. Antimicrob Agents Chemother 2011; 55:5034–5042 [View Article][PubMed]
    [Google Scholar]
  84. Mansour H, Chahine EB, Karaoui LR, El-Lababidi RM. Cethromycin: a new ketolide antibiotic. Ann Pharmacother 2013; 47:368–379 [View Article][PubMed]
    [Google Scholar]
  85. Lemaître N, Liang X, Najeeb J, Lee CJ, Titecat M et al. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC. MBio 2017; 8: [View Article][PubMed]
    [Google Scholar]
  86. Andersson JA, Fitts EC, Kirtley ML, Ponnusamy D, Peniche AG et al. New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2016; 60:3717–3729 [View Article][PubMed]
    [Google Scholar]
  87. Russell P, Eley SM, Hibbs SE, Manchee RJ, Stagg AJ et al. A comparison of Plague vaccine, USP and EV76 vaccine induced protection against Yersinia pestis in a murine model. Vaccine 1995; 13:1551–1556 [View Article][PubMed]
    [Google Scholar]
  88. Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 2004; 17:434–464 [View Article][PubMed]
    [Google Scholar]
  89. Quenee LE, Schneewind O. Plague vaccines and the molecular basis of immunity against Yersinia pestis. Hum Vaccin 2009; 5:817–823 [View Article][PubMed]
    [Google Scholar]
  90. Quenee LE, Ciletti NA, Elli D, Hermanas TM, Schneewind O. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines. Vaccine 2011; 29:6572–6583 [View Article][PubMed]
    [Google Scholar]
  91. Amemiya K, Meyers JL, Rogers TE, Fast RL, Bassett AD et al. CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague. Vaccine 2009; 27:2220–2229 [View Article][PubMed]
    [Google Scholar]
  92. Chu K, Hu J, Meng F, Li J, Luo L et al. Immunogenicity and safety of subunit plague vaccine: A randomized phase 2a clinical trial. Hum Vaccin Immunother 2016; 12:2334–2340 [View Article][PubMed]
    [Google Scholar]
  93. Liu L, Wei D, Qu Z, Sun L, Miao Y et al. A safety and immunogenicity study of a novel subunit plague vaccine in cynomolgus macaques. J Appl Toxicol 2018; 38:408–417 [View Article][PubMed]
    [Google Scholar]
  94. Tao P, Mahalingam M, Rao VB. Highly Effective Soluble and Bacteriophage T4 nanoparticle plague vaccines against Yersinia pestis. Methods Mol Biol 2016; 1403:499–518 [View Article][PubMed]
    [Google Scholar]
  95. Erova TE, Rosenzweig JA, Sha J, Suarez G, Sierra JC et al. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine. Clin Vaccine Immunol 2013; 20:227–238 [View Article][PubMed]
    [Google Scholar]
  96. Lin JS, Szaba FM, Kummer LW, Chromy BA, Smiley ST. Yersinia pestis YopE contains a dominant CD8 T cell epitope that confers protection in a mouse model of pneumonic plague. J Immunol 2011; 187:897–904 [View Article][PubMed]
    [Google Scholar]
  97. Zhang Q, Wang Q, Tian G, Qi Z, Zhang X et al. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques. Hum Vaccin Immunother 2014; 10:368–377 [View Article][PubMed]
    [Google Scholar]
  98. Demeure CE, Derbise A, Carniel E. Oral vaccination against plague using Yersinia pseudotuberculosis. Chem Biol Interact 2017; 267:89–95 [View Article][PubMed]
    [Google Scholar]
  99. Derbise A, Hanada Y, Khalifé M, Carniel E, Demeure CE. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination. PLoS Negl Trop Dis 2015; 9:e0004162 [View Article][PubMed]
    [Google Scholar]
  100. van Lier CJ, Sha J, Kirtley ML, Cao A, Tiner BL et al. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague. Infect Immun 2014; 82:2485–2503 [View Article][PubMed]
    [Google Scholar]
  101. Yamanaka H, Hoyt T, Bowen R, Yang X, Crist K et al. An IL-12 DNA vaccine co-expressing Yersinia pestis antigens protects against pneumonic plague. Vaccine 2009; 27:80–87 [View Article][PubMed]
    [Google Scholar]
  102. Wang S, Goguen JD, Li F, Lu S. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge. Vaccine 2011; 29:6802–6809 [View Article][PubMed]
    [Google Scholar]
  103. Rocke TE, Tripp DW, Russell RE, Abbott RC, Richgels KLD et al. Sylvatic Plague Vaccine Partially Protects Prairie Dogs (Cynomys spp.) in Field Trials. Ecohealth 2017; 14:438–450 [View Article][PubMed]
    [Google Scholar]
  104. Abbott RC, Osorio JE, Bunck CM, Rocke TE. Sylvatic plague vaccine: a new tool for conservation of threatened and endangered species?. Ecohealth 2012; 9:243–250 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000915
Loading
/content/journal/jmm/10.1099/jmm.0.000915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error