Low prevalence of mupirocin resistance among Staphylococcus aureus clinical isolates from a Chinese tertiary hospital Free

Abstract

Between September 2013 and March 2016, 26 (1.95 %) of 1333 Staphylococcus aureus clinical isolates from a Chinese hospital were found to be resistant to mupirocin, including 18 (1.35 %) with high-level mupirocin resistance and 8 (0.6 %) with low-level mupirocin resistance. Among the 18 isolates with high-level mupirocin resistance, 17 were associated with plasmid-mediated mupA. Meanwhile, the 8 isolates with low-level mupirocin resistance were shown to have a V588F mutation in ileS. A total of 14 sequence types (STs) and 18 spa types were identified. All four isolates with t062 belonged to ST965. Three ST5-MRSA-SCCmec II were linked to t311, which was not previously reported. Furthermore, ST764-MRSA-SCCmec II-t002, exclusively found in Japan before, was identified in this study. In conclusion, we observed relatively low prevalence of mupirocin resistance among S. aureus with considerable heterogeneity in East China. Newly emerging MRSA clones with high-level mupirocin resistance should be of concern.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000911
2018-12-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/2/201.html?itemId=/content/journal/jmm/10.1099/jmm.0.000911&mimeType=html&fmt=ahah

References

  1. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010; 23:616–687 [View Article][PubMed]
    [Google Scholar]
  2. Huang SS, Platt R. Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization. Clin Infect Dis 2003; 36:281–285 [View Article][PubMed]
    [Google Scholar]
  3. Robicsek A, Beaumont JL, Thomson RB, Govindarajan G, Peterson LR. Topical therapy for methicillin-resistant Staphylococcus aureus colonization: impact on infection risk. Infect Control Hosp Epidemiol 2009; 30:623–632 [View Article][PubMed]
    [Google Scholar]
  4. Nakama T, Nureki O, Yokoyama S. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem 2001; 276:47387–47393 [View Article][PubMed]
    [Google Scholar]
  5. Poovelikunnel T, Gethin G, Humphreys H. Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. J Antimicrob Chemother 2015; 70:2681–2692 [View Article][PubMed]
    [Google Scholar]
  6. Udo EE, Jacob LE, Mathew B. Genetic analysis of methicillin-resistant Staphylococcus aureus expressing high- and low-level mupirocin resistance. J Med Microbiol 2001; 50:909–915 [View Article][PubMed]
    [Google Scholar]
  7. Thomas CM, Hothersall J, Willis CL, Simpson TJ. Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 2010; 8:281–289 [View Article][PubMed]
    [Google Scholar]
  8. Patel JB, Gorwitz RJ, Jernigan JA. Mupirocin resistance. Clin Infect Dis 2009; 49:935–941 [View Article][PubMed]
    [Google Scholar]
  9. Finlay JE, Miller LA, Poupard JA. Interpretive criteria for testing susceptibility of staphylococci to mupirocin. Antimicrob Agents Chemother 1997; 41:1137–1139 [View Article][PubMed]
    [Google Scholar]
  10. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 26th informational supplement (M100-S26). Wayne, PA,USA: Clinical and Laboratory Standards Institute; 2016
    [Google Scholar]
  11. Liu QZ, Wu Q, Zhang YB, Liu MN, Hu FP et al. Prevalence of clinical meticillin-resistant Staphylococcus aureus (MRSA) with high-level mupirocin resistance in Shanghai and Wenzhou, China. Int J Antimicrob Agents 2010; 35:114–118 [View Article][PubMed]
    [Google Scholar]
  12. Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ et al. High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother 2015; 59:3350–3356 [View Article][PubMed]
    [Google Scholar]
  13. Pérez-Roth E, Potel-Alvarellos C, Espartero X, Constela-Caramés L, Méndez-Álvarez S et al. Molecular epidemiology of plasmid-mediated high-level mupirocin resistance in methicillin-resistant Staphylococcus aureus in four Spanish health care settings. Int J Med Microbiol 2013; 303:201–204 [View Article][PubMed]
    [Google Scholar]
  14. Nagant C, Deplano A, Nonhoff C, de Mendonça R, Roisin S et al. Low prevalence of mupirocin resistance in Belgian Staphylococcus aureus isolates collected during a 10 year nationwide surveillance. J Antimicrob Chemother 2016; 71:266–267 [View Article][PubMed]
    [Google Scholar]
  15. Barakat GI, Nabil YM. Correlation of mupirocin resistance with biofilm production in methicillin-resistant Staphylococcus aureus from surgical site infections in a tertiary centre, Egypt. J Glob Antimicrob Resist 2016; 4:16–20 [View Article][PubMed]
    [Google Scholar]
  16. Wang L, Liu Y, Yang Y, Huang G, Wang C et al. Multidrug-resistant clones of community-associated meticillin-resistant Staphylococcus aureus isolated from Chinese children and the resistance genes to clindamycin and mupirocin. J Med Microbiol 2012; 61:1240–1247 [View Article][PubMed]
    [Google Scholar]
  17. Cadilla A, David MZ, Daum RS, Boyle-Vavra S. Association of high-level mupirocin resistance and multidrug-resistant methicillin-resistant Staphylococcus aureus at an academic center in the midwestern United States. J Clin Microbiol 2011; 49:95–100 [View Article][PubMed]
    [Google Scholar]
  18. Yang JA, Park DW, Sohn JW, Yang IS, Kim KH et al. Molecular analysis of isoleucyl-tRNA synthetase mutations in clinical isolates of methicillin-resistant Staphylococcus aureus with low-level mupirocin resistance. J Korean Med Sci 2006; 21:827–832 [View Article][PubMed]
    [Google Scholar]
  19. Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM et al. spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 2004; 42:792–799 [View Article][PubMed]
    [Google Scholar]
  20. Harmsen D, Claus H, Witte W, Rothgänger J, Claus H et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 2003; 41:5442–5448 [View Article][PubMed]
    [Google Scholar]
  21. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus . J Clin Microbiol 2000; 38:1008–1015[PubMed]
    [Google Scholar]
  22. Mulvey MR, Chui L, Ismail J, Louie L, Murphy C et al. Development of a Canadian standardized protocol for subtyping methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. J Clin Microbiol 2001; 39:3481–3485 [View Article][PubMed]
    [Google Scholar]
  23. Zhang K, Mcclure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus . J Clin Microbiol 2005; 43:5026–5033 [View Article][PubMed]
    [Google Scholar]
  24. Li S, Zhao L, Zheng B, Shen P, Ji J et al. Identification and characterization of cfr-positive Staphylococcus aureus isolates from community-onset infectious patients in a county hospital in China. J Med Microbiol 2015; 64:910–915 [View Article][PubMed]
    [Google Scholar]
  25. Chen H, Liu Y, Jiang X, Chen M, Wang H. Rapid change of methicillin-resistant Staphylococcus aureus clones in a Chinese tertiary care hospital over a 15-year period. Antimicrob Agents Chemother 2010; 54:1842–1847 [View Article][PubMed]
    [Google Scholar]
  26. Cheng H, Yuan W, Zeng F, Hu Q, Shang W et al. Molecular and phenotypic evidence for the spread of three major methicillin-resistant Staphylococcus aureus clones associated with two characteristic antimicrobial resistance profiles in China. J Antimicrob Chemother 2013; 68:2453–2457 [View Article][PubMed]
    [Google Scholar]
  27. Cai JC, Hu YY, Zhou HW, Chen GX, Zhang R. Dissemination of the same cfr-carrying plasmid among methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococcal isolates in China. Antimicrob Agents Chemother 2015; 59:3669–3671 [View Article][PubMed]
    [Google Scholar]
  28. Yu F, Liu Y, Lu C, Lv J, Qi X et al. Dissemination of fusidic acid resistance among Staphylococcus aureus clinical isolates. BMC Microbiol 2015; 15:210 [View Article][PubMed]
    [Google Scholar]
  29. Fitzgerald JR. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 2012; 20:192–198 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000911
Loading
/content/journal/jmm/10.1099/jmm.0.000911
Loading

Data & Media loading...

Most cited Most Cited RSS feed