1887

Abstract

Purpose. Sporothrix globosa is the most important agent of sporotrichosis in China. The aim of this study is to investigate the population parameters of S. globosa.

Methodology. In the present study, we developed a set of microsatellite markers that have a cumulative discriminatory power of 1.000. Using these microsatellite loci, 120 strains of S. globosa that had clear sampling information were analysed.

Results. Population structure analyses revealed that S. globosa can be separated into three clusters. Analysis of molecular variance (AMOVA) results indicated that genetic variation was more significant among these three clusters than between the two clinical types analysed. In addition, cluster II might have the widest range of distribution and contain higher genetic diversity than the other clusters.

Conclusions. Our work is the first to develop a suite of highly discriminatory microsatellite markers and reveal the population parameters of S. globosa, and our results suggest that different lineages can coexist in two different clinical types. In addition, it was hypothesised that lineages with higher genetic diversity might have a wider distribution range.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000896
2018-12-13
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/2/248.html?itemId=/content/journal/jmm/10.1099/jmm.0.000896&mimeType=html&fmt=ahah

References

  1. Zhou X, Rodrigues AM, Feng P, de Hoog G. Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers 2014;66:153–165
    [Google Scholar]
  2. Zhang Y, Hagen F, Stielow B, Rodrigues AM, Samerpitak K et al. Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 000 human and animal case reports. Persoonia 2015;35:1–20 [CrossRef][PubMed]
    [Google Scholar]
  3. Espinel-Ingroff A, Abreu DPB, Almeida-Paes R, Brilhante RSN, Chakrabarti A et al. Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods. Antimicrob Agents Chemother 2017;61:e01057e01017 [CrossRef][PubMed]
    [Google Scholar]
  4. Arrillaga-Moncrieff I, Capilla J, Mayayo E, Marimon R, Mariné M et al. Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect 2009;15:651–655 [CrossRef][PubMed]
    [Google Scholar]
  5. Song Y, Li SS, Zhong SX, Liu YY, Yao L et al. Report of 457 sporotrichosis cases from Jilin province, northeast China, a serious endemic region. J Eur Acad Dermatol Venereol 2013;27:313–318 [CrossRef][PubMed]
    [Google Scholar]
  6. de Oliveira MM, de Almeida-Paes R, de Medeiros Muniz M, de Lima Barros MB, Galhardo MC et al. Sporotrichosis caused by Sporothrix globosa in Rio De Janeiro, brazil: case report. Mycopathologia 2010;169:359–363 [CrossRef][PubMed]
    [Google Scholar]
  7. Moussa TAA, Kadasa NMS, Al Zahrani HS, Ahmed SA, Feng P et al. Origin and distribution of Sporothrix globosa causing sapronoses in Asia. J Med Microbiol 2017;66:560–569 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhao L, Cui Y, Zhen Y, Yao L, Shi Y et al. Genetic variation of Sporothrix globosa isolates from diverse geographic and clinical origins in China. Emerg Microbes Infect 2017;6:e88 [CrossRef][PubMed]
    [Google Scholar]
  9. Lim S, Notley-Mcrobb L, Lim M, Carter DA. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet Biol 2004;41:1025–1036 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang YQ, Xu XG, Zhang M, Jiang P, Zhou XY et al. Sporotrichosis: clinical and histopathological manifestations. Am J Dermatopathol 2011;33:296–302 [CrossRef][PubMed]
    [Google Scholar]
  11. Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 2001;11:1441–1452 [CrossRef][PubMed]
    [Google Scholar]
  12. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 2007;16:1099–1106 [CrossRef][PubMed]
    [Google Scholar]
  13. Bart-Delabesse E, Humbert JF, Delabesse E, Bretagne S. Microsatellite markers for typing Aspergillus fumigatus isolates. J Clin Microbiol 1998;36:2413–2418[PubMed]
    [Google Scholar]
  14. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155:945–959[PubMed]
    [Google Scholar]
  15. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005;14:2611–2620 [CrossRef][PubMed]
    [Google Scholar]
  16. Earl DA, Vonholdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012;4:359–361 [CrossRef]
    [Google Scholar]
  17. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007;23:1801–1806 [CrossRef][PubMed]
    [Google Scholar]
  18. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010;10:564–567 [CrossRef][PubMed]
    [Google Scholar]
  19. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012;28:2537–2539 [CrossRef][PubMed]
    [Google Scholar]
  20. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M et al. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database-the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 2015;53:313–337 [CrossRef][PubMed]
    [Google Scholar]
  21. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015;35:242–263 [CrossRef][PubMed]
    [Google Scholar]
  22. Hebert PD, Cywinska A, Ball SL, Dewaard JR. Biological identifications through DNA barcodes. Proc Biol Sci 2003;270:313–321 [CrossRef][PubMed]
    [Google Scholar]
  23. Dutech C, Enjalbert J, Fournier E, Delmotte F, Barrès B et al. Challenges of microsatellite isolation in fungi. Fungal Genet Biol 2007;44:933–949 [CrossRef][PubMed]
    [Google Scholar]
  24. Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M. Ecological consequences of genetic diversity. Ecol Lett 2008;11:609–623 [CrossRef][PubMed]
    [Google Scholar]
  25. de Oliveira MM, Veríssimo C, Sabino R, Aranha J, Zancopé-Oliveira RM et al. First autochthone case of sporotrichosis by Sporothrix globosa in Portugal. Diagn Microbiol Infect Dis 2014;78:388–390 [CrossRef][PubMed]
    [Google Scholar]
  26. Alanio A, Desnos-Ollivier M, Garcia-Hermoso D, Bretagne S. Investigating clinical issues by genotyping of medically important fungi: why and how?. Clin Microbiol Rev 2017;30:671–707 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000896
Loading
/content/journal/jmm/10.1099/jmm.0.000896
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error