Characterization of a multidrug-resistant Klebsiella pneumoniae ST607-K25 clone responsible for a nosocomial outbreak in a neonatal intensive care unit. Free

Abstract

Purpose. Multidrug-resistant Klebsiella pneumoniae strains are regularly involved in hospital outbreaks. This study describes an ESBL-producing K. pneumoniae clone (ST607-K25) responsible for a nosocomial outbreak in a neonatal intensive care unit.

Methodology. Fourteen strains isolated from 13 patients were included. Antimicrobial susceptibility testing was performed by the agar diffusion method. A clonal link was first investigated by fingerprinting (ERIC-PCR and REP-PCR) then confirmed by MLST. Characterization was performed by molecular detection and identification of several drug resistance and virulence determinants.

Results. All strains expressed the same antibiotype, combining ESBL production, fluoroquinolones and aminoglycoside resistance, except for one which remained susceptible to fluoroquinolones. Fingerprinting methods confirmed the clonal link and MLST identified a ST607 clone. Molecular investigations revealed: (I) genes encoding for two narrow-spectrum beta-lactamases (SHV-1 and TEM-1) and an ESBL (CTX-M-15); (II) absence of any chromosomal mutation in quinolone resistance-determining- regions (QRDR) of gyrA/gyrB and parC/parE genes; (III) genes encoding for three plasmid-mediated quinolone-resistance (PMQR) determinants: oqxAB (14/14), aac(6′)-Ib-cr (14/14) and qnrB (13/14); (IV) production of a K25 capsule; and (V) carriage of three genes encoding for virulence factors: mrkD (type 3 fimbriae) (14/14), ybts (yersiniabactin) (12/14) and entB (enterobactin) (14/14).

Conclusion. We described a multidrug-resistant Kp ST607 clone responsible for a nosocomial outbreak in vulnerable and premature newborns. Molecular investigations allowed us to identify several resistance factors responsible for ESBL production (CTX-M-15) and quinolone resistance (three PMQR determinants). The detection of a gene (ybtS) belonging to the high-pathogenicity island yersiniabactin could partly explain its high colonization and diffusion potential.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000884
2018-12-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/1/67.html?itemId=/content/journal/jmm/10.1099/jmm.0.000884&mimeType=html&fmt=ahah

References

  1. Friedlaender C. Ueber die Schizomyceten bei der acuten fibrösen Pneumonie. Arch Für Pathol Anat Physiol Für Klin Med 1882; 87:319–324
    [Google Scholar]
  2. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11:589–603 [View Article][PubMed]
    [Google Scholar]
  3. Stapleton PJ, Murphy M, McCallion N, Brennan M, Cunney R et al. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: a systematic review. Arch Dis Child Fetal Neonatal Ed 2016; 101:72–78 [View Article][PubMed]
    [Google Scholar]
  4. Zaidi AK, Thaver D, Ali SA, Khan TA. Pathogens associated with sepsis in newborns and young infants in developing countries. Pediatr Infect Dis J 2009; 28:S10–S18 [View Article][PubMed]
    [Google Scholar]
  5. Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 Suppl 1:S81–S87 [View Article][PubMed]
    [Google Scholar]
  6. Ko WC, Paterson DL, Sagnimeni AJ, Hansen DS, von Gottberg A et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 2002; 8:160–166 [View Article][PubMed]
    [Google Scholar]
  7. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D et al. Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 2009; 48:1–12 [View Article][PubMed]
    [Google Scholar]
  8. EUCAST.. EUCAST: AST of bacteria. http://www.eucast.org/ast_of_bacteria/ [accessed 26 December 2017]
  9. Rasheed JK, Anderson GJ, Yigit H, Queenan AM, Doménech-Sánchez A et al. Characterization of the extended-spectrum beta-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob Agents Chemother 2000; 44:2382–2388 [View Article][PubMed]
    [Google Scholar]
  10. Elliott AG, Ganesamoorthy D, Coin L, Cooper MA, Cao MD. Complete genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603. Genome Announc 2016; 4: DOI Epub ahead of print 26 May 2016 [View Article][PubMed]
    [Google Scholar]
  11. Dallenne C, da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65:490–495 [View Article][PubMed]
    [Google Scholar]
  12. Rasheed JK, Jay C, Metchock B, Berkowitz F, Weigel L et al. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother 1997; 41:647–653 [View Article][PubMed]
    [Google Scholar]
  13. Belaaouaj A, Lapoumeroulie C, Caniça MM, Vedel G, Névot P et al. Nucleotide sequences of the genes coding for the TEM-like beta-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett 1994; 120:75–80[PubMed]
    [Google Scholar]
  14. Carattoli A, García-Fernández A, Varesi P, Fortini D, Gerardi S et al. Molecular epidemiology of Escherichia coli producing extended-spectrum beta-lactamases isolated in Rome, Italy. J Clin Microbiol 2008; 46:103–108 [View Article][PubMed]
    [Google Scholar]
  15. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 2014; 20:1812–1820 [View Article][PubMed]
    [Google Scholar]
  16. Institut Pasteur MLST.. Klebsiella sequence typing home page. http://bigsdb.pasteur.fr/klebsiella/klebsiella.html [accessed 26 December 2017]
  17. Lahey Clinic.. ß-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes.. https://www.lahey.org/Studies/ [accessed 23 October 2018]
  18. Weigel LM, Steward CD, Tenover FC. gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob Agents Chemother 1998; 42:2661–2667 [View Article][PubMed]
    [Google Scholar]
  19. Vila J, Ruiz J, Marco F, Barcelo A, Goñi P et al. Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob Agents Chemother 1994; 38:2477–2479 [View Article][PubMed]
    [Google Scholar]
  20. Veldman K, Kant A, Dierikx C, van Essen-Zandbergen A, Wit B et al. Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia. Int J Food Microbiol 2014; 177:72–77 [View Article][PubMed]
    [Google Scholar]
  21. Komp Lindgren P, Karlsson A, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother 2003; 47:3222–3232 [View Article][PubMed]
    [Google Scholar]
  22. Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol 2013; 62:1823–1827 [View Article][PubMed]
    [Google Scholar]
  23. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991; 19:6823–6831 [View Article][PubMed]
    [Google Scholar]
  24. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005; 43:4178–4182 [View Article][PubMed]
    [Google Scholar]
  25. Compain F, Babosan A, Brisse S, Genel N, Audo J et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol 2014; 52:4377–4380 [View Article][PubMed]
    [Google Scholar]
  26. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N et al. wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 2013; 51:4073–4078 [View Article][PubMed]
    [Google Scholar]
  27. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2017; 72:2145–2155 [View Article][PubMed]
    [Google Scholar]
  28. Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med 2017; 24:S44–S51 [View Article][PubMed]
    [Google Scholar]
  29. Babini GS, Livermore DM. Are SHV beta-lactamases universal in Klebsiella pneumoniae?. Antimicrob Agents Chemother 2000; 44:2230 [View Article][PubMed]
    [Google Scholar]
  30. Chaves J, Ladona MG, Segura C, Coira A, Reig R et al. SHV-1 beta-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother 2001; 45:2856–2861 [View Article][PubMed]
    [Google Scholar]
  31. Perilli M, Forcella C, Celenza G, Frascaria P, Segatore B et al. Evidence for qnrB1 and aac(6')-Ib-cr in CTX-M-15-producing uropathogenic Enterobacteriaceae in an Italian teaching hospital. Diagn Microbiol Infect Dis 2009; 64:90–93 [View Article][PubMed]
    [Google Scholar]
  32. Frasson I, Cavallaro A, Bergo C, Richter SN, Palù G. Prevalence of aac(6')-Ib-cr plasmid-mediated and chromosome-encoded fluoroquinolone resistance in Enterobacteriaceae in Italy. Gut Pathog 2011; 3:12 [View Article][PubMed]
    [Google Scholar]
  33. Bado I, Gutiérrez C, García-Fulgueiras V, Cordeiro NF, Araújo Pirez L et al. CTX-M-15 in combination with aac(6')-Ib-cr is the most prevalent mechanism of resistance both in Escherichia coli and Klebsiella pneumoniae, including K. pneumoniae ST258, in an ICU in Uruguay. J Glob Antimicrob Resist 2016; 6:5–9 [View Article][PubMed]
    [Google Scholar]
  34. Garcia-Fulgueiras V, Araujo L, Bado I, Cordeiro NF, Mota MI et al. Allodemic distribution of plasmids co-harbouring blaCTX-M-15/aac(6')-Ib-cr/qnrB in Klebsiella pneumoniae is the main source of extended-spectrum β-lactamases in Uruguay's paediatric hospital. J Glob Antimicrob Resist 2017; 9:68–73 [View Article][PubMed]
    [Google Scholar]
  35. Ruiz E, Rezusta A, Sáenz Y, Rocha-Gracia R, Vinué L et al. New genetic environments of aac(6')-Ib-cr gene in a multiresistant Klebsiella oxytoca strain causing an outbreak in a pediatric intensive care unit. Diagn Microbiol Infect Dis 2011; 69:236–238 [View Article][PubMed]
    [Google Scholar]
  36. Kim ES, Jeong JY, Jun JB, Choi SH, Lee SO et al. Prevalence of aac(6')-Ib-cr encoding a ciprofloxacin-modifying enzyme among Enterobacteriaceae blood isolates in Korea. Antimicrob Agents Chemother 2009; 53:2643–2645 [View Article][PubMed]
    [Google Scholar]
  37. Sørensen AH, Hansen LH, Johannesen E, Sørensen SJ. Conjugative plasmid conferring resistance to olaquindox. Antimicrob Agents Chemother 2003; 47:798–799 [View Article][PubMed]
    [Google Scholar]
  38. Hansen LH, Johannesen E, Burmølle M, Sørensen AH, Sørensen SJ. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 2004; 48:3332–3337 [View Article][PubMed]
    [Google Scholar]
  39. Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 2007; 60:145–147 [View Article][PubMed]
    [Google Scholar]
  40. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA et al. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 2009; 53:3582–3584 [View Article][PubMed]
    [Google Scholar]
  41. Perez F, Rudin SD, Marshall SH, Coakley P, Chen L et al. OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob Agents Chemother 2013; 57:4602–4603 [View Article][PubMed]
    [Google Scholar]
  42. Yuan J, Xu X, Guo Q, Zhao X, Ye X et al. Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J Antimicrob Chemother 2012; 67:1655–1659 [View Article][PubMed]
    [Google Scholar]
  43. Liu BT, Yang QE, Li L, Sun J, Liao XP et al. Dissemination and characterization of plasmids carrying oqxAB-bla CTX-M genes in Escherichia coli isolates from food-producing animals. PLoS One 2013; 8:e73947 DOI Epub ahead of print 9 September 2013 [View Article][PubMed]
    [Google Scholar]
  44. Wong MH, Chan EW, Chen S. Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrob Agents Chemother 2015; 59:3290–3297 [View Article][PubMed]
    [Google Scholar]
  45. Norman A, Hansen LH, She Q, Sørensen SJ. Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 2008; 60:59–74 [View Article][PubMed]
    [Google Scholar]
  46. Guillard T, Lebreil AL, Hansen LH, Kisserli A, Berger S et al. Discrimination between native and Tn6010-associated oqxAB in Klebsiella spp., Raoultella spp., and other Enterobacteriaceae by using a two-step strategy. Antimicrob Agents Chemother 2015; 59:5838–5840 [View Article][PubMed]
    [Google Scholar]
  47. Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107–118 [View Article][PubMed]
    [Google Scholar]
  48. Shankar C, Veeraraghavan B, Nabarro LEB, Ravi R, Ragupathi NKD et al. Whole genome analysis of hypervirulent Klebsiella pneumoniae isolates from community and hospital acquired bloodstream infection. BMC Microbiol 2018; 18:6 [View Article][PubMed]
    [Google Scholar]
  49. Schubert S, Rakin A, Heesemann J. The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol 2004; 294:83–94 [View Article][PubMed]
    [Google Scholar]
  50. Lin TL, Lee CZ, Hsieh PF, Tsai SF, Wang JT. Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol 2008; 190:515–526 [View Article][PubMed]
    [Google Scholar]
  51. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 2018; 4: Epub ahead of print 9 July 2018 [View Article][PubMed]
    [Google Scholar]
  52. Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F et al. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 2011; 79:3309–3316 [View Article][PubMed]
    [Google Scholar]
  53. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 2015; 112:E3574E3581 [View Article][PubMed]
    [Google Scholar]
  54. Bachman MA, Miller VL, Weiser JN. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog 2009; 5:e1000622 [View Article][PubMed]
    [Google Scholar]
  55. Lawlor MS, O'Connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 2007; 75:1463–1472 [View Article][PubMed]
    [Google Scholar]
  56. Bachman MA, Lenio S, Schmidt L, Oyler JE, Weiser JN. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio 2012; 3:00224–11 [View Article][PubMed]
    [Google Scholar]
  57. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016; 80:629–661 [View Article][PubMed]
    [Google Scholar]
  58. Buré A, Legrand P, Arlet G, Jarlier V, Paul G et al. Dissemination in five French hospitals of Klebsiella pneumoniae serotype K25 harbouring a new transferable enzymatic resistance to third generation cephalosporins and aztreonam. Eur J Clin Microbiol Infect Dis 1988; 7:780–782 [View Article][PubMed]
    [Google Scholar]
  59. Arlet G, Rouveau M, Casin I, Bouvet PJ, Lagrange PH et al. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 beta-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol 1994; 32:2553–2558[PubMed]
    [Google Scholar]
  60. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 2015; 1354:12–31 [View Article][PubMed]
    [Google Scholar]
  61. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009; 22:664–689 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000884
Loading
/content/journal/jmm/10.1099/jmm.0.000884
Loading

Data & Media loading...

Most cited Most Cited RSS feed