1887

Abstract

Purpose. To investigate the clinical, phenotypic and genotypic characteristics of Staphylococcus aureus strains causing osteoarticular infections in a large paediatric series.

Methodology. Medical records of children who were hospitalized with the diagnosis of community-associated S. aureus (CA-SA) osteomyelitis and/or septic arthritis in the two major tertiary paediatric hospitals of Athens during an 8-year period (2007–2015) were reviewed, and S. aureus isolates were analysed regarding antimicrobial resistance, detection of pathogenicity genes and genotyping using SCCmec, agr typing, PFGE and MLST.

Results. During the study period, 123 children with CA-SA osteoarticular infections were identified, and methicillin-resistant S. aureus (MRSA) accounted for 44 of these (35.8 %). Children with MRSA infection had a significantly higher admission rate to the ICU (5.7  vs 0 %, P=0.04) and longer duration of hospitalization (21.6 vs 16.7 days, P=0.04). Sixty-eight isolates [42 (methicillin-sensitive S. aureus) MSSA and 26 MRSA] were available for molecular analysis. All MRSA strains were mecA-positive and most carried the SCCmec IV cassette (23/26, 88 %) and belonged to the PFGE type C (24/26, 92.3 %), agr type 3 (24/26, 92.3 %) and the MLST ST80 clone (24/26, 92.3 %). In contrast, MSSA strains showed polyclonality by PFGE and agr typing. Regarding pathogenicity genes, MRSA vs MSSA isolates showed higher detection rates of PVL (96.2 vs 4.8 %, P<0.0001) and fib (80.8 vs 50 %, P=0.02).

Conclusions. In our study a considerable number of S. aureus osteoarticular infections were due to CA-MRSA isolates, most of which belonged to the ST80 clone and had a higher incidence of specific virulence factors, entailing higher ICU admission rates and a longer duration of hospitalization.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000859
2018-10-23
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/12/1753.html?itemId=/content/journal/jmm/10.1099/jmm.0.000859&mimeType=html&fmt=ahah

References

  1. Peltola H, Pääkkönen M. Acute osteomyelitis in children. N Engl J Med 2014;370:352–360 [CrossRef][PubMed]
    [Google Scholar]
  2. Arnold JC, Bradley JS. Osteoarticular infections in children. Infect Dis Clin North Am 2015;29:557–574 [CrossRef][PubMed]
    [Google Scholar]
  3. Ratnayake K, Davis AJ, Brown L, Young TP. Pediatric acute osteomyelitis in the postvaccine, methicillin-resistant Staphylococcus aureus era. Am J Emerg Med 2015;33:1420–1424 [CrossRef][PubMed]
    [Google Scholar]
  4. Godley DR. Managing musculoskeletal infections in children in the era of increasing bacterial resistance. JAAPA 2015;28:24–29 [CrossRef][PubMed]
    [Google Scholar]
  5. Otto M. Molecular insight into how MRSA is becoming increasingly dangerous. Virulence 2012;3:521–522 [CrossRef][PubMed]
    [Google Scholar]
  6. Otto M. MRSA virulence and spread. Cell Microbiol 2012;14:1513–1521 [CrossRef][PubMed]
    [Google Scholar]
  7. Post V, Wahl P, Uçkay I, Ochsner P, Zimmerli W et al. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int J Med Microbiol 2014;304:565–576 [CrossRef][PubMed]
    [Google Scholar]
  8. Dodwell ER. Osteomyelitis and septic arthritis in children: current concepts. Curr Opin Pediatr 2013;25:58–63 [CrossRef][PubMed]
    [Google Scholar]
  9. Ritz N, Curtis N. The role of Panton-Valentine leukocidin in Staphylococcus aureus musculoskeletal infections in children. Pediatr Infect Dis J 2012;31:514–518 [CrossRef][PubMed]
    [Google Scholar]
  10. Dohin B, Gillet Y, Kohler R, Lina G, Vandenesch F et al. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J 2007;26:1042–1048 [CrossRef][PubMed]
    [Google Scholar]
  11. Heilmann C. Adhesion mechanisms of staphylococci. Adv Exp Med Biol 2011;715:105–123 [CrossRef][PubMed]
    [Google Scholar]
  12. Elasri MO, Thomas JR, Skinner RA, Blevins JS, Beenken KE et al. Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis. Bone 2002;30:275–280 [CrossRef][PubMed]
    [Google Scholar]
  13. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007;298:1763–1771 [CrossRef][PubMed]
    [Google Scholar]
  14. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233–2239[PubMed]
    [Google Scholar]
  15. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 2002;70:631–641 [CrossRef][PubMed]
    [Google Scholar]
  16. Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2002;46:2155–2161 [CrossRef][PubMed]
    [Google Scholar]
  17. Mehrotra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol 2000;38:1032–1035[PubMed]
    [Google Scholar]
  18. Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 2002;70:4987–4996 [CrossRef][PubMed]
    [Google Scholar]
  19. Tristan A, Ying L, Bes M, Etienne J, Vandenesch F et al. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol 2003;41:4465–4467 [CrossRef][PubMed]
    [Google Scholar]
  20. Campoccia D, Baldassarri L, Pirini V, Ravaioli S, Montanaro L et al. Molecular epidemiology of Staphylococcus aureus from implant orthopaedic infections: ribotypes, agr polymorphism, leukocidal toxins and antibiotic resistance. Biomaterials 2008;29:4108–4116 [CrossRef][PubMed]
    [Google Scholar]
  21. Pääkkönen M, Kallio PE, Kallio MJ, Peltola H. Management of osteoarticular infections caused by Staphylococcus aureus is similar to that of other etiologies: analysis of 199 staphylococcal bone and joint infections. Pediatr Infect Dis J 2012;31:436–438 [CrossRef][PubMed]
    [Google Scholar]
  22. Sarkissian EJ, Gans I, Gunderson MA, Myers SH, Spiegel DA et al. Community-acquired methicillin-resistant Staphylococcus aureus musculoskeletal infections: emerging trends over the past decade. J Pediatr Orthop 2016;36:323–327 [CrossRef][PubMed]
    [Google Scholar]
  23. Peltola H, Pääkkönen M, Kallio P, Kallio MJ..OM-SA Study Group Clindamycin vs. first-generation cephalosporins for acute osteoarticular infections of childhood-a prospective quasi-randomized controlled trial. Clin Microbiol Infect 2012;18:582–589 [CrossRef][PubMed]
    [Google Scholar]
  24. Pendleton A, Kocher MS. Methicillin-resistant Staphylococcus aureus bone and joint infections in children. J Am Acad Orthop Surg 2015;23:29–37 [CrossRef][PubMed]
    [Google Scholar]
  25. Hawkshead JJ, Patel NB, Steele RW, Heinrich SD. Comparative severity of pediatric osteomyelitis attributable to methicillin-resistant versus methicillin-sensitive Staphylococcus aureus. J Pediatr Orthop 2009;29:85–90 [CrossRef][PubMed]
    [Google Scholar]
  26. Pääkkönen M, Peltola H. Bone and joint infections. Pediatr Clin North Am 2013;60:425–436 [CrossRef][PubMed]
    [Google Scholar]
  27. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010;23:616–687 [CrossRef][PubMed]
    [Google Scholar]
  28. Tristan A, Bes M, Meugnier H, Lina G, Bozdogan B et al. Global distribution of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis 2007;13:594–600 [CrossRef][PubMed]
    [Google Scholar]
  29. Krziwanek K, Luger C, Sammer B, Stumvoll S, Stammler M et al. PVL-positive MRSA in Austria. Eur J Clin Microbiol Infect Dis 2007;26:931–935 [CrossRef][PubMed]
    [Google Scholar]
  30. Larsen AR, Stegger M, Böcher S, Sørum M, Monnet DL et al. Emergence and characterization of community-associated methicillin-resistant Staphyloccocus aureus infections in Denmark, 1999 to 2006. J Clin Microbiol 2009;47:73–78 [CrossRef][PubMed]
    [Google Scholar]
  31. Fang H, Hedin G, Li G, Nord CE. Genetic diversity of community-associated methicillin-resistant Staphylococcus aureus in southern Stockholm, 2000-2005. Clin Microbiol Infect 2008;14:370–376 [CrossRef][PubMed]
    [Google Scholar]
  32. Sdougkos G, Chini V, Papanastasiou DA, Christodoulou G, Tagaris G et al. Methicillin-resistant Staphylococcus aureus producing Panton-Valentine leukocidin as a cause of acute osteomyelitis in children. Clin Microbiol Infect 2007;13:651–654 [CrossRef][PubMed]
    [Google Scholar]
  33. Niniou I, Vourli S, Lebessi E, Foustoukou M, Vatopoulos A et al. Clinical and molecular epidemiology of community-acquired, methicillin-resistant Staphylococcus aureus infections in children in central Greece. Eur J Clin Microbiol Infect Dis 2008;27:831–837 [CrossRef][PubMed]
    [Google Scholar]
  34. Francois P, Harbarth S, Huyghe A, Renzi G, Bento M et al. Methicillin-resistant Staphylococcus aureus, Geneva, Switzerland, 1993-2005. Emerg Infect Dis 2008;14:304–307 [CrossRef][PubMed]
    [Google Scholar]
  35. Doudoulakakis AG, Bouras D, Drougka E, Kazantzi M, Michos A et al. Community-associated Staphylococcus aureus pneumonia among Greek children: epidemiology, molecular characteristics, treatment, and outcome. Eur J Clin Microbiol Infect Dis 2016;35:1177–1185 [CrossRef][PubMed]
    [Google Scholar]
  36. Drougka E, Foka A, Liakopoulos A, Doudoulakakis A, Jelastopulu E et al. A 12-year survey of methicillin-resistant Staphylococcus aureus infections in Greece: ST80-IV epidemic?. Clin Microbiol Infect 2014;20:O796–O803 [CrossRef][PubMed]
    [Google Scholar]
  37. Otter JA, Havill NL, Boyce JM, French GL. Comparison of community-associated methicillin-resistant Staphylococcus aureus from teaching hospitals in London and the USA, 2004-2006: where is USA300 in the UK?. Eur J Clin Microbiol Infect Dis 2009;28:835–839 [CrossRef][PubMed]
    [Google Scholar]
  38. Deleo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 2010;375:1557–1568 [CrossRef][PubMed]
    [Google Scholar]
  39. Otto M. How Staphylococcus aureus breaches our skin to cause infection. J Infect Dis 2012;205:1483–1485 [CrossRef][PubMed]
    [Google Scholar]
  40. Sheikh HQ, Aqil A, Kirby A, Hossain FS. Panton-Valentine leukocidin osteomyelitis in children: a growing threat. Br J Hosp Med 2015;76:18–24 [CrossRef][PubMed]
    [Google Scholar]
  41. Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog 2009;5:e1000533 [CrossRef][PubMed]
    [Google Scholar]
  42. Cheung GY, Wang R, Khan BA, Sturdevant DE, Otto M. Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun 2011;79:1927–1935 [CrossRef][PubMed]
    [Google Scholar]
  43. Foster TJ. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2016;35:1923–1931 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000859
Loading
/content/journal/jmm/10.1099/jmm.0.000859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error