Development of a rapid colorimetric multiplex PCR–reverse line blot for the detection and typing of 14 Chlamydia trachomatis genovars Free

Abstract

Purpose. Chlamydiatrachomatis is responsible for trachoma-associated blindness as well as the most common sexually transmitted bacterial infection worldwide, although the genovars for the former are typically A–C, whilst for the latter they are D–K and for the uncommon infection lymphogranuloma venereum they are L1–3. Nucleotide variations within the ompA gene facilitate the identification of C. trachomatis genovars. This study describes a colorimetric multiplex PCR/RLB typing assay (mPCR-RLB) directed to the VD2 region of the ompA gene for general C. trachomatis positivity and the identification of 14 individual C. trachomatis genovars.

Methodology. The assay was validated by analysing 40 blinded samples that included reference strains of C. trachomatis genovars and other non-chlamydial micro-organisms that had been analysed previously using quantitative PCR (qPCR). Ninety clinical samples that had previously been found to be C. trachomatis-positive by qPCR were also evaluated using the mPCR-RLB assay.

Results. The mPCR-RLB assay showed 100 % agreement with the qPCR in the detection of C. trachomatis reference strains and no cross-reaction of non-chlamydial micro-organisms was observed. In the analysis of the chlamydial clinical samples, 97.8 % were C. trachomatis-positive by mPCR/RLB assay and there was a 96.6 % concordance with the qPCR at the group identification level and a 92.2 % concordance at the genovar level.

Conclusion. The mPCR-RLB assay is a rapid and sensitive methodology for the identification of C. trachomatis genovars associated with urogenital infections, trachoma or lymphogranuloma venereum diseases that can be implemented in clinical settings, helping to identify reinfections and treatment failures and establish the appropriate treatment course.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000836
2018-10-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/11/1560.html?itemId=/content/journal/jmm/10.1099/jmm.0.000836&mimeType=html&fmt=ahah

References

  1. World Health Organization Global incidence and prevalence of selected curable sexually transmitted infections-2008; 2012 www.who.int/iris/handle/10665/75181
  2. Lister NA, Fairley CK, Tabrizi SN, Garland S, Smith A. Chlamydia trachomatis serovars causing urogenital infections in women in Melbourne, Australia. J Clin Microbiol 2005; 43:2546–2547 [View Article][PubMed]
    [Google Scholar]
  3. Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F et al. Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis 2010; 201:134–155 [View Article]
    [Google Scholar]
  4. Piñeiro L, Lekuona A, Cilla G, Lasa I, Martinez-Gallardo LP et al. Prevalence of Chlamydia trachomatis infection in parturient women in Gipuzkoa, Northern Spain. Springerplus 2016; 5:566 [View Article][PubMed]
    [Google Scholar]
  5. Rours GI, Duijts L, Moll HA, Arends LR, de Groot R et al. Chlamydia trachomatis infection during pregnancy associated with preterm delivery: a population-based prospective cohort study. Eur J Epidemiol 2011; 26:493–502 [View Article][PubMed]
    [Google Scholar]
  6. Hammerschlag MR. Chlamydial and gonococcal infections in infants and children. Clin Infect Dis 2011; 53:S99–S102 [View Article][PubMed]
    [Google Scholar]
  7. Muñoz B, West S. Trachoma: the forgotten cause of blindness. Epidemiol Rev 1997; 19:205–217 [View Article][PubMed]
    [Google Scholar]
  8. Mabey D, Peeling RW, Venereum L. Lymphogranuloma venereum. Sex Transm Infect 2002; 78:90–92 [View Article]
    [Google Scholar]
  9. Parra-Sánchez M, García-Rey S, Rodríguez P I, Viciana Fernández P, Torres Sánchez MJ. Clinical and epidemiological characterisation of lymphogranuloma venereum in southwest Spain, 2013-2015. Sex Transm Infect 20161–3
    [Google Scholar]
  10. Sharma A, Satpathy G, Nayak N, Tandon R, Sharma N et al. Ocular Chlamydia trachomatis infections in patients attending a tertiary eye care hospital in north India: a twelve year study. Indian J Med Res 2012; 136:1004–1010[PubMed]
    [Google Scholar]
  11. Cowling CS, Liu BC, Snelling TL, Ward JS, Kaldor JM et al. Australian trachoma surveillance annual report, 2013. Commun Dis Intell Q Rep 2016; 40:E255266[PubMed]
    [Google Scholar]
  12. Ossewaarde JM, Rieffe M, de Vries A, Derksen-Nawrocki RP, Hooft HJ et al. Comparison of two panels of monoclonal antibodies for determination of Chlamydia trachomatis serovars. J Clin Microbiol 1994; 32:2968–2974[PubMed]
    [Google Scholar]
  13. Yuan Y, Zhang YX, Watkins NG, Caldwell HD. Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 1989; 57:1040–1049[PubMed]
    [Google Scholar]
  14. Lanjouw E, Ouburg S, de Vries HJ, Stary A, Radcliffe K et al. 2015 European guideline on the management of Chlamydia trachomatis infections. Int J STD AIDS 2016; 27:333–348 [View Article][PubMed]
    [Google Scholar]
  15. Gaydos CA, Theodore M, Dalesio N, Wood BJ, Quinn TC. Comparison of three nucleic acid amplification tests for detection of Chlamydia trachomatis in urine specimens. J Clin Microbiol 2004; 42:3041–3045 [View Article][PubMed]
    [Google Scholar]
  16. van der Pol B, Liesenfeld O, Williams JA, Taylor SN, Lillis RA et al. Performance of the cobas CT/NG test compared to the Aptima AC2 and Viper CTQ/GCQ assays for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 2012; 50:2244–2249 [View Article][PubMed]
    [Google Scholar]
  17. Dize L, West S, Williams JA, van der Pol B, Quinn TC et al. Comparison of the Abbott m2000 RealTime CT assay and the Cepheid GeneXpert CT/NG assay to the Roche Amplicor CT assay for detection of Chlamydia trachomatis in ocular samples from Tanzania. J Clin Microbiol 2013; 51:1611–1613 [View Article][PubMed]
    [Google Scholar]
  18. Li JH, Yin YP, Zheng HP, Zhong MY, Peng RR et al. A high-resolution melting analysis for genotyping urogenital Chlamydia trachomatis. Diagn Microbiol Infect Dis 2010; 68:366–374 [View Article][PubMed]
    [Google Scholar]
  19. Geisler WM, Black CM, Bandea CI, Morrison SG. Chlamydia trachomatis OmpA genotyping as a tool for studying the natural history of genital chlamydial infection. Sex Transm Infect 2008; 84:541–544 [View Article][PubMed]
    [Google Scholar]
  20. Stevens MP, Twin J, Fairley CK, Donovan B, Tan SE et al. Development and evaluation of an ompA quantitative real-time PCR assay for Chlamydia trachomatis serovar determination. J Clin Microbiol 2010; 48:2060–2065 [View Article][PubMed]
    [Google Scholar]
  21. Kapil R, Press CG, Hwang ML, Brown L, Geisler WM. Investigating the epidemiology of repeat Chlamydia trachomatis detection after treatment by using C. trachomatis OmpA genotyping. J Clin Microbiol 2015; 53:546–549 [View Article][PubMed]
    [Google Scholar]
  22. Gallo Vaulet L, Entrocassi C, Portu AI, Castro E, di Bartolomeo S et al. High frequency of Chlamydia trachomatis mixed infections detected by microarray assay in South American samples. PLoS One 2016; 11:e0153511 [View Article][PubMed]
    [Google Scholar]
  23. Pannekoek Y, Morelli G, Kusecek B, Morré SA, Ossewaarde JM et al. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol 2008; 8:42 [View Article][PubMed]
    [Google Scholar]
  24. Herrmann B, Isaksson J, Ryberg M, Tångrot J, Saleh I et al. Global multilocus sequence type analysis of Chlamydia trachomatis strains from 16 countries. J Clin Microbiol 2015; 53:2172–2179 [View Article]
    [Google Scholar]
  25. Versteeg B, Bruisten SM, van der Ende A, Pannekoek Y. Does typing of Chlamydia trachomatis using housekeeping multilocus sequence typing reveal different sexual networks among heterosexuals and men who have sex with men?. BMC Infect Dis 2016; 16:162 [View Article][PubMed]
    [Google Scholar]
  26. Peuchant O, Le Roy C, Herrmann B, Clerc M, Bébéar C et al. MLVA subtyping of genovar E Chlamydia trachomatis individualizes the Swedish variant and anorectal isolates from men who have sex with men. PLoS One 2012; 7:e31538 [View Article][PubMed]
    [Google Scholar]
  27. Christiansen MT, Brown AC, Kundu S, Tutill HJ, Williams R et al. Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples. BMC Infect Dis 2014; 14:591 [View Article][PubMed]
    [Google Scholar]
  28. Molano M, Meijer CJ, Morré SA, Pol R, van den Brule AJ. Combination of PCR targeting the VD2 of omp1 and reverse line blot analysis for typing of urogenital Chlamydia trachomatis serovars in cervical scrape specimens. J Clin Microbiol 2004; 42:2935–2939 [View Article][PubMed]
    [Google Scholar]
  29. Smith KS, Hocking JS, Chen M, Fairley CK, McNulty A et al. Rationale and design of REACT: a randomised controlled trial assessing the effectiveness of home-collection to increase chlamydia retesting and detect repeat positive tests. BMC Infect Dis 2014; 14:223 [View Article][PubMed]
    [Google Scholar]
  30. Kong FY, Tabrizi SN, Fairley CK, Phillips S, Fehler G et al. Higher organism load associated with failure of azithromycin to treat rectal chlamydia. Epidemiol Infect 2016; 144:2587–2596 [View Article][PubMed]
    [Google Scholar]
  31. Quint KD, van Doorn LJ, Kleter B, de Koning MN, van den Munckhof HA et al. A highly sensitive, multiplex broad-spectrum PCR-DNA-enzyme immunoassay and reverse hybridization assay for rapid detection and identification of Chlamydia trachomatis serovars. J Mol Diagn 2007; 9:631–638 [View Article][PubMed]
    [Google Scholar]
  32. Michelon CT, Rosso F, Schmid KB, Sperhacke RD, Oliveira MM et al. Colorimetric microwell plate reverse-hybridization assay for Mycobacterium tuberculosis detection. Mem Inst Oswaldo Cruz 2011; 106:194–199 [View Article][PubMed]
    [Google Scholar]
  33. Xiong L, Kong F, Zhou H, Gilbert GL. Use of PCR and reverse line blot hybridization assay for rapid simultaneous detection and serovar identification of Chlamydia trachomatis. J Clin Microbiol 2006; 44:1413–1418 [View Article][PubMed]
    [Google Scholar]
  34. Huang CT, Wong WW, Li LH, Chiang CC, Chen BD et al. Genotyping of Chlamydia trachomatis by microsphere suspension array. J Clin Microbiol 2008; 46:1126–1128 [View Article][PubMed]
    [Google Scholar]
  35. Twin J, Moore EE, Garland SM, Stevens MP, Fairley CK et al. Chlamydia trachomatis genotypes among men who have sex with men in Australia. Sex Transm Dis 2011; 38:279–285 [View Article][PubMed]
    [Google Scholar]
  36. Harris SR, Clarke IN, Seth-Smith HM, Solomon AW, Cutcliffe LT et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 2012; 44:413–419 [View Article][PubMed]
    [Google Scholar]
  37. Herrmann B, Isaksson J, Ryberg M, Tångrot J, Saleh I et al. Global multilocus sequence type analysis of Chlamydia trachomatis strains from 16 Countries. J Clin Microbiol 2015; 53:2172–2179 [View Article][PubMed]
    [Google Scholar]
  38. Gharsallah H, Frikha-Gargouri O, Sellami H, Besbes F, Znazen A et al. Chlamydia trachomatis genovar distribution in clinical urogenital specimens from Tunisian patients: high prevalence of C. trachomatis genovar E and mixed infections. BMC Infect Dis 2012; 12:333 [View Article][PubMed]
    [Google Scholar]
  39. Gharsallah H, Frikha-Gargouri O, Bom RJ, Hammami A, Bruisten SM. Comparison of reverse hybridization and ompA sequencing methods applied on Chlamydia trachomatis strains from Tunisia. Microbiologyopen 2018; 7:e00549 [View Article][PubMed]
    [Google Scholar]
  40. Zheng HP, Jiang LF, Fang DY, Xue YH, Wu YA et al. Application of an oligonucleotide array assay for rapid detecting and genotyping of Chlamydia trachomatis from urogenital specimens. Diagn Microbiol Infect Dis 2007; 57:1–6 [View Article][PubMed]
    [Google Scholar]
  41. Danielewski JA, Phillips S, Kong FYS, Smith KS, Hocking JS et al. A snapshot of Chlamydia trachomatis genetic diversity using multilocus sequence type analysis in an Australian metropolitan setting. Eur J Clin Microbiol Infect Dis 2017; 36:1297–1303 [View Article][PubMed]
    [Google Scholar]
  42. de Vrieze NH, van Rooijen M, Schim van der Loeff MF, de Vries HJ. Anorectal and inguinal lymphogranuloma venereum among men who have sex with men in Amsterdam, The Netherlands: trends over time, symptomatology and concurrent infections. Sex Transm Infect 2013; 89:548–552 [View Article][PubMed]
    [Google Scholar]
  43. Machado AC, Bandea CI, Alves MF, Joseph K, Igietseme J et al. Distribution of Chlamydia trachomatis genovars among youths and adults in Brazil. J Med Microbiol 2011; 60:472–476 [View Article][PubMed]
    [Google Scholar]
  44. Han Y, Yin YP, Shi MQ, Zhong MY, Chen SC et al. Difference in distribution of Chlamydia trachomatis genotypes among different provinces: a pilot study from four provinces in China. Jpn J Infect Dis 2013; 66:69–71 [View Article][PubMed]
    [Google Scholar]
  45. Andersson P, Harris SR, Seth Smith HM, Hadfield J, O'Neill C et al. Chlamydia trachomatis from Australian Aboriginal people with trachoma are polyphyletic composed of multiple distinctive lineages. Nat Commun 2016; 7:10688 [View Article][PubMed]
    [Google Scholar]
  46. Qin X, Zheng H, Xue Y, Ren X, Yang B et al. Prevalence of Chlamydia trachomatis genotypes in men who have sex with men and men who have sex with women using multilocus VNTR analysis-ompA typing in Guangzhou, China. PLoS One 2016; 11:e0159658 [View Article][PubMed]
    [Google Scholar]
  47. Annan NT, Sullivan AK, Nori A, Naydenova P, Alexander S et al. Rectal chlamydia–a reservoir of undiagnosed infection in men who have sex with men. Sex Transm Infect 2009; 85:176–179 [View Article][PubMed]
    [Google Scholar]
  48. Centers for Disease Control and Prevention Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae-2014. MMWR Recomm Rep 2014; 63:1–19
    [Google Scholar]
  49. Millman K, Black CM, Johnson RE, Stamm WE, Jones RB et al. Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States. J Bacteriol 2004; 186:2457–2465 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000836
Loading
/content/journal/jmm/10.1099/jmm.0.000836
Loading

Data & Media loading...

Most cited Most Cited RSS feed