1887

Abstract

Purpose. To develop a fast and inexpensive genotyping assay to identify the Mycobacterium tuberculosis complex (MTC) species most prevalent in human tuberculosis (TB), based on the thermal denaturation profiles of PCR products from mycobacterial 16S rDNA and three MTC genomic regions of difference (RD).

Methodology. Genotypes were determined by the presence and thermal denaturation profiles of the amplicons generated in the ‘preliminary’ PCR mixture (16S rDNA), followed by those of the simultaneous D1 (RD9+, RD1−) and D2 (RD4+, RD4−) PCR mixtures. The 16S rDNA profile identifies the genus Mycobacterium; the absence of any additional RD profile identifies Mycobacterium non-tuberculous (MNT) strains; additional RD4+ and RD9+ profiles without RD1− identify M. tuberculosis; an additional RD4+ profile per se identifies M. africanum; an additional RD4− profile per se identifies Mycobaterium bovis; additional RD1− and RD4− profiles identify M. bovis BCG.

Results. Genotypes of a panel with 44 mycobacterial strains coincided in 16 MB and five non-MTC strains; in the remaining 23 MTC strains, 17 MTB and five MA concordant genotypes and one discordant MB genotype were resolved. The genotypes of 13 human and bovine MTC isolates coincided in all four MB and eight of the nine MTB isolates.

Conclusion. Sensitivity, specificity and positive and negative predictive values of the method are 100 % for the genus Mycobacterium, which resolves MB, MTB and MA genotypes. Species/genotype agreement is 97.7 % for the panel and 92.3 % for the MTC isolates. This method may be advantageously used to identify the most prevalent MTC species in humans.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000816
2018-08-03
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/9/1310.html?itemId=/content/journal/jmm/10.1099/jmm.0.000816&mimeType=html&fmt=ahah

References

  1. WHO Global Tuberculosis Report 2017 Geneva: World Health Organization; 2017
    [Google Scholar]
  2. Reddington K, O'Grady J, Dorai-Raj S, Maher M, van Soolingen D et al. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains. J Clin Microbiol 2011;49:651–657 [CrossRef][PubMed]
    [Google Scholar]
  3. Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T et al. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 1998;4:59–70 [CrossRef][PubMed]
    [Google Scholar]
  4. Harris NB, Payeur J, Bravo D, Osorio R, Stuber T et al. Recovery of Mycobacterium bovis from soft fresh cheese originating in Mexico. Appl Environ Microbiol 2007;73:1025–1028 [CrossRef][PubMed]
    [Google Scholar]
  5. Müller B, Dürr S, Alonso S, Hattendorf J, Laisse CJ et al. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis 2013;19:899–908 [CrossRef][PubMed]
    [Google Scholar]
  6. Bobadilla-del Valle M, Torres-González P, Cervera-Hernández ME, Martínez-Gamboa A, Crabtree-Ramirez B et al. Trends of Mycobacterium bovis isolation and first-line anti-tuberculosis drug susceptibility profile: a fifteen-year laboratory-based surveillance. PLoS Negl Trop Dis 2015;9:e0004124 [CrossRef][PubMed]
    [Google Scholar]
  7. de Kantor IN, Ambroggi M, Poggi S, Morcillo N, da Silva Telles MA et al. Human Mycobacterium bovis infection in ten Latin American countries. Tuberculosis 2008;88:358–365 [CrossRef][PubMed]
    [Google Scholar]
  8. Armand S, Vanhuls P, Delcroix G, Courcol R, Lemaître N. Comparison of the Xpert MTB/RIF test with an IS6110-TaqMan real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol 2011;49:1772–1776 [CrossRef][PubMed]
    [Google Scholar]
  9. Pinsky BA, Banaei N. Multiplex real-time PCR assay for rapid identification of Mycobacterium tuberculosis complex members to the species level. J Clin Microbiol 2008;46:2241–2246 [CrossRef][PubMed]
    [Google Scholar]
  10. Vazquez-Chacon CA, Martínez-Guarneros A, Couvin D, González-Y-Merchand JA, Rivera-Gutierrez S et al. Human multidrug-resistant Mycobacterium bovis infection in Mexico. Tuberculosis 2015;95:802–809 [CrossRef][PubMed]
    [Google Scholar]
  11. López-Rocha E, Juárez-Álvarez J, Riego-Ruiz L, Enciso-Moreno L, Ortega-Aguilar F et al. Genetic diversity of the Mycobacterium tuberculosis complex in San Luis Potosí, México. BMC Res Notes 2013;6:172 [CrossRef][PubMed]
    [Google Scholar]
  12. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 1975;94:441–448 [CrossRef][PubMed]
    [Google Scholar]
  13. Brody JR, Kern SE. Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. Biotechniques 2004;36:214–216 [CrossRef][PubMed]
    [Google Scholar]
  14. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 1997;245:154–160 [CrossRef][PubMed]
    [Google Scholar]
  15. Khan SA, Sung K, Nawaz MS. Detection of aacA-aphD, qacEδ1, marA, floR, and tetA genes from multidrug-resistant bacteria: comparative analysis of real-time multiplex PCR assays using EvaGreen(®) and SYBR(®) Green I dyes. Mol Cell Probes 2011;25:78–86 [CrossRef][PubMed]
    [Google Scholar]
  16. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611–622 [CrossRef][PubMed]
    [Google Scholar]
  17. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997;35:907–914[PubMed]
    [Google Scholar]
  18. Abadia E, Zhang J, Ritacco V, Kremer K, Ruimy R et al. The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method: providing guidelines for quality assurance when working on membranes. BMC Infect Dis 2011;11:110 [CrossRef][PubMed]
    [Google Scholar]
  19. WHO Xpert MTB/RIF implementation manual. 2014
  20. El-Hajj HH, Marras SA, Tyagi S, Kramer FR, Alland D. Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J Clin Microbiol 2001;39:4131–4137 [CrossRef][PubMed]
    [Google Scholar]
  21. Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis 2013;13:349–361 [CrossRef][PubMed]
    [Google Scholar]
  22. Joao I, Cristovao P, Antunes L, Nunes B, Jordao L. Identification of nontuberculous mycobacteria by partial gene sequencing and public databases. Int J Mycobacteriol 2014;3:144–151 [CrossRef][PubMed]
    [Google Scholar]
  23. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 1996;178:1274–1282 [CrossRef][PubMed]
    [Google Scholar]
  24. Pounder JI, Anderson CM, Voelkerding KV, Salfinger M, Dormandy J et al. Mycobacterium tuberculosis complex differentiation by genomic deletion patterns with multiplex polymerase chain reaction and melting analysis. Diagn Microbiol Infect Dis 2010;67:101–105 [CrossRef][PubMed]
    [Google Scholar]
  25. Hernández-Arteaga S, López-Revilla R. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR. Infect Agent Cancer 2010;5:9 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000816
Loading
/content/journal/jmm/10.1099/jmm.0.000816
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error