1887

Abstract

Purpose. In this study, we aimed to investigate the genomic characteristics and evolution of pathogenicity islands of an enteropathogenic Escherichia coli (EPEC) strain, and to obtain a transcriptional profile of EPEC under different concentrations of ciprofloxacin using microarray analysis.

Methodology. The complete EPEC Deng genome was sequenced and compared to genomes of 12 previously sequenced E. coli strains. A 180 min time course experiment was performed in which the effect of ciprofloxacin on EPEC Deng growth was evaluated. Microarray profiling was used to study the effect of varying ciprofloxacin pressure on genome-wide transcriptional expression. Differential expression of the genes identified using microarray data was confirmed using real-time quantitative reverse transcriptase PCR (RTQ). Target gene-defective recombineering strains were created to investigate the influence of the grlA gene on ciprofloxacin susceptibility.

Results. Genomic comparisons revealed a close phylogenic relationship between EPEC Deng and E. coli strains O111_H_11128 and O26_H11_11368, with low genetic diversity among their type III secretion system genes and typically genetic variation in the map, tir, eae and espA genes of EPEC. It is noteworthy that 21 genes were down-regulated at all time points examined in the group exposed to 2 µg ml of ciprofloxacin. A grlA-mutant derivative with increased susceptibility to ciprofloxacin was discovered.

Conclusions. The present findings provide an overview of the phylogenetic characteristics of EPEC Deng and its transcriptional response to ciprofloxacin, further suggesting that GrlA may play a clinically important role in EPEC responses to ciprofloxacin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000790
2018-07-10
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/9/1368.html?itemId=/content/journal/jmm/10.1099/jmm.0.000790&mimeType=html&fmt=ahah

References

  1. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 1998;30:911–921 [CrossRef][PubMed]
    [Google Scholar]
  2. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2:123–140 [CrossRef][PubMed]
    [Google Scholar]
  3. Scaletsky IC, Souza TB, Aranda KR, Okeke IN. Genetic elements associated with antimicrobial resistance in enteropathogenic Escherichia coli (EPEC) from Brazil. BMC Microbiol 2010;10:25 [CrossRef][PubMed]
    [Google Scholar]
  4. Amisano G, Fornasero S, Migliaretti G, Caramello S, Tarasco V et al. Diarrheagenic Escherichia coli in acute gastroenteritis in infants in North-West Italy. New Microbiol 2011;34:45–51[PubMed]
    [Google Scholar]
  5. Rajendran P, Ajjampur SS, Chidambaram D, Chandrabose G, Thangaraj B et al. Pathotypes of diarrheagenic Escherichia coli in children attending a tertiary care hospital in South India. Diagn Microbiol Infect Dis 2010;68:117–122 [CrossRef][PubMed]
    [Google Scholar]
  6. Munera D, Crepin VF, Marches O, Frankel G. N-terminal type III secretion signal of enteropathogenic Escherichia coli translocator proteins. J Bacteriol 2010;192:3534–3539 [CrossRef][PubMed]
    [Google Scholar]
  7. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 2009;106:17939–17944 [CrossRef][PubMed]
    [Google Scholar]
  8. Pallen MJ, Wren BW. Bacterial pathogenomics. Nature 2007;449:835–842 [CrossRef][PubMed]
    [Google Scholar]
  9. Blum G, Ott M, Lischewski A, Ritter A, Imrich H et al. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 1994;62:606–614[PubMed]
    [Google Scholar]
  10. Hacker J, Bender L, Ott M, Wingender J, Lund B et al. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 1990;8:213–225 [CrossRef][PubMed]
    [Google Scholar]
  11. Groisman EA, Ochman H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 1996;87:791–794 [CrossRef][PubMed]
    [Google Scholar]
  12. Elliott SJ, Sperandio V, Girón JA, Shin S, Mellies JL et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 2000;68:6115–6126 [CrossRef][PubMed]
    [Google Scholar]
  13. Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS et al. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 2000;406:64–67 [CrossRef][PubMed]
    [Google Scholar]
  14. Garmendia J, Frankel G, Crepin VF. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 2005;73:2573–2585 [CrossRef][PubMed]
    [Google Scholar]
  15. Aakra A, Vebø H, Snipen L, Hirt H, Aastveit A et al. Transcriptional response of Enterococcus faecalis V583 to erythromycin. Antimicrob Agents Chemother 2005;49:2246–2259 [CrossRef][PubMed]
    [Google Scholar]
  16. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005;41:S120–S126 [CrossRef][PubMed]
    [Google Scholar]
  17. Rand JD, Danby SG, Greenway DL, England RR. Increased expression of the multidrug efflux genes acrAB occurs during slow growth of Escherichia coli. FEMS Microbiol Lett 2002;207:91–95 [CrossRef][PubMed]
    [Google Scholar]
  18. Terai A, Yamamoto S, Mitsumori K, Okada Y, Kurazono H et al. Escherichia coli virulence factors and serotypes in acute bacterial prostatitis. Int J Urol 1997;4:289–294 [CrossRef][PubMed]
    [Google Scholar]
  19. Wang H, Dzink-Fox JL, Chen M, Levy SB. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother 2001;45:1515–1521 [CrossRef][PubMed]
    [Google Scholar]
  20. Visvalingam J, Hernandez-Doria JD, Holley RA. Examination of the genome-wide transcriptional response of Escherichia coli O157:H7 to cinnamaldehyde exposure. Appl Environ Microbiol 2013;79:942–950 [CrossRef][PubMed]
    [Google Scholar]
  21. Crépin S, Lamarche MG, Garneau P, Séguin J, Proulx J et al. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant. BMC Genomics 2008;9:568 [CrossRef][PubMed]
    [Google Scholar]
  22. Tetteh AY, Sun KH, Hung CY, Kittur FS, Ibeanu GC et al. Transcriptional response of selenopolypeptide genes and selenocysteine biosynthesis machinery genes in Escherichia coli during selenite reduction. Int J Microbiol 2014;2014:1–11 [CrossRef][PubMed]
    [Google Scholar]
  23. Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother 2003;47:559–562 [CrossRef][PubMed]
    [Google Scholar]
  24. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T et al. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 2009;191:347–354 [CrossRef][PubMed]
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  26. Bose M, Barber RD. Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 2006;6:223–227[PubMed]
    [Google Scholar]
  27. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010;5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  29. Rozas J, Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 1999;15:174–175 [CrossRef][PubMed]
    [Google Scholar]
  30. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–264 [CrossRef][PubMed]
    [Google Scholar]
  31. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003;31:e15 [CrossRef][PubMed]
    [Google Scholar]
  32. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000;97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  33. Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM et al. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 2005;192:1422–1429 [CrossRef][PubMed]
    [Google Scholar]
  34. Ogura Y, Ooka T, Asadulghani, Terajima J, Nougayrède JP et al. Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 2007;8:R138 [CrossRef][PubMed]
    [Google Scholar]
  35. Castillo A, Eguiarte LE, Souza V. A genomic population genetics analysis of the pathogenic enterocyte effacement island in Escherichia coli: the search for the unit of selection. Proc Natl Acad Sci USA 2005;102:1542–1547 [CrossRef][PubMed]
    [Google Scholar]
  36. McGraw EA, Li J, Selander RK, Whittam TS. Molecular evolution and mosaic structure of alpha, beta, and gamma intimins of pathogenic Escherichia coli. Mol Biol Evol 1999;16:12–22 [CrossRef][PubMed]
    [Google Scholar]
  37. Tarr CL, Whittam TS. Molecular evolution of the intimin gene in O111 clones of pathogenic Escherichia coli. J Bacteriol 2002;184:479–487 [CrossRef][PubMed]
    [Google Scholar]
  38. Hutter B, Schaab C, Albrecht S, Borgmann M, Brunner NA et al. Prediction of mechanisms of action of antibacterial compounds by gene expression profiling. Antimicrob Agents Chemother 2004;48:2838–2844 [CrossRef][PubMed]
    [Google Scholar]
  39. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 2014;22:438–445 [CrossRef][PubMed]
    [Google Scholar]
  40. Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE et al. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci USA 2001;98:10416–10421 [CrossRef][PubMed]
    [Google Scholar]
  41. Bergsten G, Wullt B, Svanborg C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int J Med Microbiol 2005;295:487–502 [CrossRef][PubMed]
    [Google Scholar]
  42. Padavannil A, Jobichen C, Mills E, Velazquez-Campoy A, Li M et al. Structure of GrlR-GrlA complex that prevents GrlA activation of virulence genes. Nat Commun 2013;4:2546 [CrossRef][PubMed]
    [Google Scholar]
  43. Barba J, Bustamante VH, Flores-Valdez MA, Deng W, Finlay BB et al. A positive regulatory loop controls expression of the locus of enterocyte effacement-encoded regulators Ler and GrlA. J Bacteriol 2005;187:7918–7930 [CrossRef][PubMed]
    [Google Scholar]
  44. Kalule JB, Fortuin S, Calder B, Robberts L, Keddy KH et al. Proteomic comparison of three clinical diarrhoeagenic drug-resistant Escherichia coli isolates grown on CHROMagar™STEC media. J Proteomics 2018;180: [CrossRef][PubMed]
    [Google Scholar]
  45. Liu YF, Yan JJ, Lei HY, Teng CH, Wang MC et al. Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect Immun 2012;80:1815–1822 [CrossRef][PubMed]
    [Google Scholar]
  46. Prehna G, Zhang G, Gong X, Duszyk M, Okon M et al. A protein export pathway involving Escherichia coli porins. Structure 2012;20:1154–1166 [CrossRef][PubMed]
    [Google Scholar]
  47. Iyoda S, Koizumi N, Satou H, Lu Y, Saitoh T et al. The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. J Bacteriol 2006;188:5682–5692 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000790
Loading
/content/journal/jmm/10.1099/jmm.0.000790
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error