1887

Abstract

Purpose. Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a major challenge for global healthcare systems. The objectives of this study were to determine the nosocomial spread of CRKP clones and analyse the molecular characteristics of CRKP in our hospital.

Methodology. Ninety-eight non-duplicated clinical CRKP isolates were collected from March 2014–June 2015. Clinical, demographic and microbiological data of patients with CRKP were reviewed. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing were applied to investigate the genetic relationship between the 98 isolates. Antibiotic resistance genes were identified by conventional PCR-sequencing.

Results. PFGE patterns were grouped into 26 clusters. Two main PFGE clusters were identified: L (53 isolates, belonging to ST11) and N (11 isolates, belonging to ST11). The most dominant ST was ST11 (79 %, 77/98), followed by ST273 (5 %, 5/98). KPC-2 (n=82) was the predominant carbapenemase followed by OXA-48 (n=64). Fifty isolates (51 %, 50/98) harboured bla KPC-2 and bla OXA-48 simultaneously, and three of these isolates were detected with the third carbapenemase genes (bla IMP-8 or bla VIM-1).

Conclusion. The clonal spread of K. pneumoniae ST11 expressing OXA-48, KPC-2 and CTX-M-14 β-lactamases was the cause of an outbreak of CRKP. To the best of our knowledge, a single strain harbouring A-, B- and D-class carbapenemase genes has not previously been identified. There is a high prevalence of plasmid-encoded KPC-2- and OXA-48-producing CRKP in our hospital; most isolates were members of ST11, which may be representative of a high-risk CRKP clone disseminating in central Taiwan.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000771
2018-06-06
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/7/957.html?itemId=/content/journal/jmm/10.1099/jmm.0.000771&mimeType=html&fmt=ahah

References

  1. Lee CM, Liao CH, Lee WS, Liu YC, Mu JJ et al. Outbreak of Klebsiella pneumoniae carbapenemase-2-producing K. pneumoniae sequence type 11 in Taiwan in 2011. Antimicrob Agents Chemother 2012; 56: 5016– 5022 [CrossRef] [PubMed]
    [Google Scholar]
  2. Cubero M, Cuervo G, Dominguez , Tubau F, Martí S et al. Carbapenem-resistant and carbapenem-susceptible isogenic isolates of Klebsiella pneumoniae ST101 causing infection in a tertiary hospital. BMC Microbiol 2015; 15: 177 [CrossRef] [PubMed]
    [Google Scholar]
  3. Ma L, Wang JT, Wu TL, Siu LK, Chuang YC et al. Emergence of OXA-48-producing Klebsiella pneumoniae in Taiwan. PLoS One 2015; 10: e0139152 [CrossRef] [PubMed]
    [Google Scholar]
  4. Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill 2013; 18: 20549 [CrossRef] [PubMed]
    [Google Scholar]
  5. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 2014; 20: 821– 830 [CrossRef] [PubMed]
    [Google Scholar]
  6. Guo L, An J, Ma Y, Ye L, Luo Y et al. Nosocomial outbreak of OXA-48-producing Klebsiella pneumoniae in a Chinese hospital: clonal transmission of ST147 and ST383. PLoS One 2016; 11: e0160754 [CrossRef] [PubMed]
    [Google Scholar]
  7. Ma L, Lu PL, Siu LK, Hsieh MH. Molecular typing and resistance mechanisms of imipenem-non-susceptible Klebsiella pneumoniae in Taiwan: results from the Taiwan surveillance of antibiotic resistance (TSAR) study, 2002–2009. J Med Microbiol 2013; 62: 101– 107 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lu PL, Hsieh YJ, Lin JE, Huang JW, Yang TY et al. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int J Antimicrob Agents 2016; 48: 564– 568 [CrossRef] [PubMed]
    [Google Scholar]
  9. Wang JT, Wu UI, Lauderdale TL, Chen MC, Li SY et al. Carbapenem-nonsusceptible Enterobacteriaceae in Taiwan. PLoS One 2015; 10: e0121668 [CrossRef] [PubMed]
    [Google Scholar]
  10. Clinical and Laboratory Standards Institute Performance Standards For antimicrobial Susceptibility Testing, Twentieth-Fourth informational supplement, M100-S24. Wayne, PA, USA: CLSI; 2014
    [Google Scholar]
  11. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17: 1791– 1798 [CrossRef] [PubMed]
    [Google Scholar]
  12. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 2007; 59: 321– 322 [CrossRef] [PubMed]
    [Google Scholar]
  13. Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob Agents Chemother 2004; 48: 533– 537 [CrossRef] [PubMed]
    [Google Scholar]
  14. Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K et al. Multiplex PCR amplification assay for the detection of bla SHV, bla TEM and bla CTX-M genes in Enterobacteriaceae. APMIS 2007; 115: 1400– 1408 [CrossRef] [PubMed]
    [Google Scholar]
  15. Yu WL, Winokur PL, von Stein DL, Pfaller MA, Wang JH et al. First description of Klebsiella pneumoniae harboring CTX-M β-lactamases (CTX-M-14 and CTX-M-3) in Taiwan. Antimicrob Agents Chemother 2002; 46: 1098– 1100 [PubMed] [Crossref]
    [Google Scholar]
  16. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 2006; 57: 154– 155 [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu CP, Wang NY, Lee CM, Weng LC, Tseng HK et al. Nosocomial and community-acquired Enterobacter cloacae bloodstream infection: risk factors for and prevalence of SHV-12 in multiresistant isolates in a medical centre. J Hosp Infect 2004; 58: 63– 77 [CrossRef] [PubMed]
    [Google Scholar]
  18. Ma L, Lin CJ, Chen JH, Fung CP, Chang FY et al. Widespread dissemination of aminoglycoside resistance genes armA and rmtB in Klebsiella pneumoniae isolates in Taiwan producing CTX-M-type extended-spectrum β-lactamases. Antimicrob Agents Chemother 2009; 53: 104– 111 [CrossRef] [PubMed]
    [Google Scholar]
  19. Fernández-Martínez M, Miró E, Ortega A, Bou G, González-López JJ et al. Molecular identification of aminoglycoside-modifying enzymes in clinical isolates of Escherichia coli resistant to amoxicillin/clavulanic acid isolated in Spain. Int J Antimicrob Agents 2015; 46: 157– 163 [CrossRef] [PubMed]
    [Google Scholar]
  20. Carroll KC, Glanz BD, Borek AP, Burger C, Bhally HS et al. Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of Enterobacteriaceae. J Clin Microbiol 2006; 44: 3506– 3509 [CrossRef] [PubMed]
    [Google Scholar]
  21. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63: 219– 228 [CrossRef] [PubMed]
    [Google Scholar]
  22. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33: 2233– 2239 [PubMed]
    [Google Scholar]
  23. Vourli S, Dafopoulou K, Vrioni G, Tsakris A, Pournaras S. Evaluation of two automated systems for colistin susceptibility testing of carbapenem-resistant Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 2017; 72: 2528– 2530 [CrossRef] [PubMed]
    [Google Scholar]
  24. Matuschek E, Åhman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin - evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect 2017; (in press). doi: [CrossRef] [PubMed]
    [Google Scholar]
  25. van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017; 8: 460– 469 [CrossRef] [PubMed]
    [Google Scholar]
  26. Yu F, Wang S, Lv J, Qi X, Guo Y et al. Coexistence of OXA-48-producing Klebsiella pneumoniae and Escherichia coli in a hospitalized patient who returned from Europe to China. Antimicrob Agents Chemother 2017; 61: e02580-16 [CrossRef] [PubMed]
    [Google Scholar]
  27. Tada T, Tsuchiya M, Shimada K, Nga TTT, Thu LTA et al. Dissemination of carbapenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA Methylases (RmtB and RmtC) in Vietnam. BMC Infect Dis 2017; 17: 467 [CrossRef] [PubMed]
    [Google Scholar]
  28. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum β-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol 2001; 39: 3747– 3749 [CrossRef] [PubMed]
    [Google Scholar]
  29. Chiu SK, Wu TL, Chuang YC, Lin JC, Fung CP et al. National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One 2013; 8: e69428 [CrossRef] [PubMed]
    [Google Scholar]
  30. Tseng IL, Liu YM, Wang SJ, Yeh HY, Hsieh CL et al. Emergence of carbapenemase producing Klebsiella pneumonia and spread of KPC-2 and KPC-17 in Taiwan: a nationwide study from 2011 to 2013. PLoS One 2015; 10: e0138471 [CrossRef] [PubMed]
    [Google Scholar]
  31. Chen YT, Lin JC, Fung CP, Lu PL, Chuang YC et al. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J Antimicrob Chemother 2014; 69: 628– 631 [CrossRef] [PubMed]
    [Google Scholar]
  32. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016; 7: 895 [CrossRef] [PubMed]
    [Google Scholar]
  33. He Q, Chen W, Huang L, Lin Q, Zhang J et al. Performance evaluation of three automated identification systems in detecting carbapenem-resistant Enterobacteriaceae. Ann Clin Microbiol Antimicrob 2016; 15: 40 [CrossRef] [PubMed]
    [Google Scholar]
  34. Barguigua A, El Otmani F, Lakbakbi El Yaagoubi F, Talmi M, Zerouali K et al. First report of a Klebsiella pneumoniae strain coproducing NDM-1, VIM-1 and OXA-48 carbapenemases isolated in Morocco. APMIS 2013; 121: 675– 677 [CrossRef] [PubMed]
    [Google Scholar]
  35. Lázaro-Perona F, Sarria-Visa A, Ruiz-Carrascoso G, Mingorance J, García-Rodríguez J et al. Klebsiella pneumoniae co-producing NDM-7 and OXA-48 carbapenemases isolated from a patient with prolonged hospitalisation. Int J Antimicrob Agents 2017; 49: 112– 113 [CrossRef] [PubMed]
    [Google Scholar]
  36. Xie L, Dou Y, Zhou K, Chen Y, Han L et al. Coexistence of bla OXA-48 and Truncated bla NDM-1 on Different Plasmids in a Klebsiella pneumoniae Isolate in China. Front Microbiol 2017; 8: 133 [CrossRef]
    [Google Scholar]
  37. Xiang DR, Li JJ, Sheng ZK, Yu HY, Deng M et al. Complete sequence of a novel IncR-F33:A-:B- plasmid, pKP1034, Harboring fosA3, bla KPC-2, bla CTX-M-65, bla SHV-12, and rmtB from an epidemic Klebsiella pneumoniae sequence type 11 strain in China. Antimicrob Agents Chemother 2015; 60: 1343– 1348 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000771
Loading
/content/journal/jmm/10.1099/jmm.0.000771
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error