1887

Abstract

Extended-spectrum cephalosporin- and/or carbapenem-resistant (ESC and/or Carb) constitute a public health hazard because of limited treatment options and are endemic among humans in Greece. Recently, ESC and Carb have been increasingly isolated from companion animals, stressing their potential role as a reservoir for humans. However, the presence of ESC bacteria in companion animals within Greek households has not been determined yet. Genes conferring the ESC and Carb phenotype were detected among canine isolates and their chromosomal or plasmid location was determined. Standard methods were applied for plasmid characterization. The clonal relatedness of the recovered isolates was examined by multilocus sequence typing (MLST). Here, we report the first findings on the presence of ESC in healthy Greek dogs. ESC isolates were associated with different sequence types (STs), including the human pandemic ST131 clone. The occurrence of human-related ESBL/pAmpC genes, plasmid types and/or strain STS in this animal reservoir suggests possible bilateral transmission.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000768
2018-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/7/931.html?itemId=/content/journal/jmm/10.1099/jmm.0.000768&mimeType=html&fmt=ahah

References

  1. Moreno A, Bello H, Guggiana D, Domínguez M, González G. Extended-spectrum β-lactamases belonging to CTX-M group produced by Escherichia coli strains isolated from companion animals treated with enrofloxacin. Vet Microbiol 2008; 129:203–208 [View Article][PubMed]
    [Google Scholar]
  2. Shaheen BW, Nayak R, Foley SL, Kweon O, Deck J et al. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob Agents Chemother 2011; 55:5666–5675 [View Article][PubMed]
    [Google Scholar]
  3. Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 2012; 18:646–655 [View Article][PubMed]
    [Google Scholar]
  4. Pomba C, Rantala M, Greko C, Baptiste KE, Catry B et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother 2017; 72:957–968 [View Article][PubMed]
    [Google Scholar]
  5. Rubin JE, Pitout JD. Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Vet Microbiol 2014; 170:10–18 [View Article][PubMed]
    [Google Scholar]
  6. Karkaba A, Grinberg A, Benschop J, Pleydell E. Characterisation of extended-spectrum β-lactamase and AmpC β-lactamase- producing Enterobacteriaceae isolated from companion animals in New Zealand. N Z Vet J 2017; 65:105–112 [View Article][PubMed]
    [Google Scholar]
  7. Kawamura K, Sugawara T, Matsuo N, Hayashi K, Norizuki C et al. Spread of CTX-type extended-spectrum β-lactamase-producing Escherichia coli isolates of epidemic clone B2-O25-ST131 among dogs and cats in Japan. Microb Drug Resist 2017; 23:1059–1066 [View Article][PubMed]
    [Google Scholar]
  8. Liu X, Liu H, Li Y, Hao C. High prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front Microbiol 2016; 7:7 [View Article][PubMed]
    [Google Scholar]
  9. Srisanga S, Angkititrakul S, Sringam P, Le Ho PT, T Vo AT et al. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats. J Vet Sci 2017; 18:273–281 [View Article][PubMed]
    [Google Scholar]
  10. Yousfi M, Touati A, Mairi A, Brasme L, Gharout-Sait A et al. Emergence of carbapenemase-producing Escherichia coli isolated from companion animals in Algeria. Microb Drug Resist 2016; 22:342–346 [View Article][PubMed]
    [Google Scholar]
  11. Meyer E, Gastmeier P, Kola A, Schwab F. Pet animals and foreign travel are risk factors for colonisation with extended-spectrum β-lactamase-producing Escherichia coli. Infection 2012; 40:685–687 [View Article][PubMed]
    [Google Scholar]
  12. González-Torralba A, Oteo J, Asenjo A, Bautista V, Fuentes E et al. Survey of carbapenemase-producing Enterobacteriaceae in companion dogs in Madrid, Spain. Antimicrob Agents Chemother 2016; 60:2499–2501 [View Article][PubMed]
    [Google Scholar]
  13. Shaheen BW, Nayak R, Boothe DM. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrob Agents Chemother 2013; 57:2902–2903 [View Article][PubMed]
    [Google Scholar]
  14. Stolle I, Prenger-Berninghoff E, Stamm I, Scheufen S, Hassdenteufel E et al. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother 2013; 68:2802–2808 [View Article][PubMed]
    [Google Scholar]
  15. Falgenhauer L, Imirzalioglu C, Ghosh H, Gwozdzinski K, Schmiedel J et al. Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST410 in humans and animals in Germany. Int J Antimicrob Agents 2016; 47:457–465 [View Article][PubMed]
    [Google Scholar]
  16. Dierikx CM, van Duijkeren E, Schoormans AH, van Essen-Zandbergen A, Veldman K et al. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother 2012; 67:1368–1374 [View Article][PubMed]
    [Google Scholar]
  17. Johnson JR, Clabots C, Kuskowski MA. Multiple-host sharing, long-term persistence, and virulence of Escherichia coli clones from human and animal household members. J Clin Microbiol 2008; 46:4078–4082 [View Article][PubMed]
    [Google Scholar]
  18. Kontopidou F, Giamarellou H, Katerelos P, Maragos A, Kioumis I et al. Infections caused by carbapenem-resistant Klebsiella pneumoniae among patients in intensive care units in Greece: a multi-centre study on clinical outcome and therapeutic options. Clin Microbiol Infect 2014; 20:O117–O123 [View Article][PubMed]
    [Google Scholar]
  19. Antachopoulos C, Iosifidis E. Colistin use in neonates and children with infections due to carbapenem-resistant bacteria. Pediatr Infect Dis J 2017; 36:905–907 [View Article][PubMed]
    [Google Scholar]
  20. Aslantaş Ö, Yilmaz . Prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC β-lactamase (pAmpC) producing Escherichia coli in dogs. J Vet Med Sci 2017; 79:1024–1030 [View Article][PubMed]
    [Google Scholar]
  21. Bogaerts P, Huang TD, Bouchahrouf W, Bauraing C, Berhin C et al. Characterization of ESBL- and AmpC-producing Enterobacteriaceae from diseased companion animals in Europe. Microb Drug Resist 2015; 21:643–650 [View Article][PubMed]
    [Google Scholar]
  22. Sallem RB, Gharsa H, Slama KB, Rojo-Bezares B, Estepa V et al. First detection of CTX-M-1, CMY-2, and QnrB19 resistance mechanisms in fecal Escherichia coli isolates from healthy pets in Tunisia. Vector Borne Zoonotic Dis 2013; 13:98–102 [View Article][PubMed]
    [Google Scholar]
  23. Hordijk J, Schoormans A, Kwakernaak M, Duim B, Broens E et al. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front Microbiol 2013; 4:242 [View Article][PubMed]
    [Google Scholar]
  24. Yousfi M, Mairi A, Touati A, Hassissene L, Brasme L et al. Extended spectrum β-lactamase and plasmid mediated quinolone resistance in Escherichia coli fecal isolates from healthy companion animals in Algeria. J Infect Chemother 2016; 22:431–435 [View Article][PubMed]
    [Google Scholar]
  25. Rzewuska M, Stefańska I, Kizerwetter-Swida M, Chrobak-Cmiel D, Szczygielska P et al. Characterization of extended-spectrum-β-lactamases produced by Escherichia coli strains isolated from dogs in Poland. Pol J Microbiol 2015; 64:285–288 [View Article][PubMed]
    [Google Scholar]
  26. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement M100-S25 Wayne, PA: CLSI; 2014
    [Google Scholar]
  27. Zarkotou O, Pournaras S, Altouvas G, Pitiriga V, Tziraki M et al. Comparative evaluation of tigecycline susceptibility testing methods for expanded-spectrum cephalosporin- and carbapenem-resistant gram-negative pathogens. J Clin Microbiol 2012; 50:3747–3750 [View Article][PubMed]
    [Google Scholar]
  28. Liakopoulos A, Geurts Y, Dierikx CM, Brouwer MS, Kant A et al. Extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg strains, the Netherlands. Emerg Infect Dis 2016; 22:1257–1261 [View Article][PubMed]
    [Google Scholar]
  29. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010; 65:2518–2529 [View Article][PubMed]
    [Google Scholar]
  30. Matsumura Y, Yamamoto M, Nagao M, Ito Y, Takakura S et al. Association of fluoroquinolone resistance, virulence genes, and IncF plasmids with extended-spectrum-β-lactamase-producing Escherichia coli sequence type 131 (ST131) and ST405 clonal groups. Antimicrob Agents Chemother 2013; 57:4736–4742 [View Article][PubMed]
    [Google Scholar]
  31. Hopkins KL, Liebana E, Villa L, Batchelor M, Threlfall EJ et al. Replicon typing of plasmids carrying CTX-M or CMY β-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob Agents Chemother 2006; 50:3203–3206 [View Article][PubMed]
    [Google Scholar]
  32. Irrgang A, Falgenhauer L, Fischer J, Ghosh H, Guiral E et al. CTX-M-15-producing E. coli isolates from food products in Germany are mainly associated with an IncF-type plasmid and belong to two predominant clonal E. coli lineages. Front Microbiol 2017; 8: [View Article][PubMed]
    [Google Scholar]
  33. Baudry PJ, Mataseje L, Zhanel GG, Hoban DJ, Mulvey MR. Characterization of plasmids encoding CMY-2 AmpC β-lactamases from Escherichia coli in Canadian intensive care units. Diagn Microbiol Infect Dis 2009; 65:379–383 [View Article][PubMed]
    [Google Scholar]
  34. Hansen KH, Bortolaia V, Nielsen CA, Nielsen JB, Schønning K et al. Host-specific patterns of genetic diversity among IncI1-Iγ and IncK plasmids encoding CMY-2 β-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Appl Environ Microbiol 2016; 82:4705–4714 [View Article][PubMed]
    [Google Scholar]
  35. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [View Article][PubMed]
    [Google Scholar]
  36. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005; 43:4178–4182 [View Article][PubMed]
    [Google Scholar]
  37. Wagner S, Gally DL, Argyle SA. Multidrug-resistant Escherichia coli from canine urinary tract infections tend to have commensal phylotypes, lower prevalence of virulence determinants and ampC-replicons. Vet Microbiol 2014; 169:171–178 [View Article][PubMed]
    [Google Scholar]
  38. Dahmen S, Haenni M, Châtre P, Madec JY. Characterization of blaCTX-M IncFII plasmids and clones of Escherichia coli from pets in France. J Antimicrob Chemother 2013; 68:2797–2801 [View Article][PubMed]
    [Google Scholar]
  39. Mavroidi A, Miriagou V, Liakopoulos A, Tzelepi Ε, Stefos A et al. Ciprofloxacin-resistant Escherichia coli in Central Greece: mechanisms of resistance and molecular identification. BMC Infect Dis 2012; 12:371 [View Article][PubMed]
    [Google Scholar]
  40. Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T et al. Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Front Microbiol 2016; 7:1021 [View Article][PubMed]
    [Google Scholar]
  41. Uz Zaman T, Aldrees M, Al Johani SM, Alrodayyan M, Aldughashem FA et al. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia. Int J Infect Dis 2014; 28:186–192 [View Article][PubMed]
    [Google Scholar]
  42. Cheng L, Cao XL, Zhang ZF, Ning MZ, Xu XJ et al. Clonal dissemination of KPC-2 producing Klebsiella pneumoniae ST11 clone with high prevalence of oqxAB and rmtB in a tertiary hospital in China: results from a 3-year period. Ann Clin Microbiol Antimicrob 2016; 15:1 [View Article][PubMed]
    [Google Scholar]
  43. Pomba C, da Fonseca JD, Baptista BC, Correia JD, Martínez-Martínez L. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6')-Ib-cr genes in a dog. Antimicrob Agents Chemother 2009; 53:327–328 [View Article][PubMed]
    [Google Scholar]
  44. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I et al. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-β-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 2010; 65:651–660 [View Article][PubMed]
    [Google Scholar]
  45. Ewers C, Bethe A, Stamm I, Grobbel M, Kopp PA et al. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence?. J Antimicrob Chemother 2014; 69:1224–1230 [View Article][PubMed]
    [Google Scholar]
  46. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014; 27:543–574 [View Article][PubMed]
    [Google Scholar]
  47. So JH, Kim J, Bae IK, Jeong SH, Kim SH et al. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagn Microbiol Infect Dis 2012; 73:195–199 [View Article][PubMed]
    [Google Scholar]
  48. Huber H, Zweifel C, Wittenbrink MM, Stephan R. ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet Microbiol 2013; 162:992–996 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000768
Loading
/content/journal/jmm/10.1099/jmm.0.000768
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error