1887

Abstract

Purpose. Burkholderia cenocepacia is among the most common members of the Burkholderia cepacia complex (Bcc) isolated from patients with cystic fibrosis (CF). The factors triggering the high rates of morbidity and mortality in CF patients are not well elucidated. In this study, we aim to highlight the genome diversity of two clinical isolates of B. cenocepacia through comparative genome analysis.

Methodology. The repertoire of virulence factors and resistance genes compared to reference strains J2315 and K56-2 was elucidated. The isolates were screened for the presence of phages and insertion sequences. Two methods were combined to obtain an accurate prediction of genomic islands (GIs): the cumulative GC profile and the IslandViewer web tool. To study evolutionary relatedness, whole genome-based single-nucleotide polymorphism (wgSNP) analysis was also performed with 43 publically available strains of the Bcc of various sequence types.

Results/Key findings. Genome-based species identification of the two isolates BC-AUH and BC-BMEH confirmed the species as B. cenocepacia. Both belonged to ST-602, a double-locus variant of ST-32 (CC31), genomovar IIIA, and carried a large number of antibiotic resistance genes. Eighteen GIs were predicted in BC-AUH and BC-BMEH, occupying 9.3 and 6.1 % of the respective genomes. Comparison to J2315 revealed 89 and 85 genes unique to BC-BMEH and BC-AUH, respectively. Additionally, 1823 intergenic SNPs were detected between BC-BMEH and BC-AUH.

Conclusion. This study mapped existing genetic variations in B. cenocepacia associated with notorious outcomes in CF patients, and the data obtained provide comprehensive, genome-inferred insights and multifactorial examination of an important human pathogen.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000759
2018-06-13
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/8/1157.html?itemId=/content/journal/jmm/10.1099/jmm.0.000759&mimeType=html&fmt=ahah

References

  1. Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol 2011;34:87–95 [CrossRef][PubMed]
    [Google Scholar]
  2. Govan JR, Brown AR, Jones AM. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2007;2:153–164 [CrossRef][PubMed]
    [Google Scholar]
  3. Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2010;16:821–830 [CrossRef][PubMed]
    [Google Scholar]
  4. Martina P, Leguizamon M, Prieto CI, Sousa SA, Montanaro P et al. Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int J Syst Evol Microbiol 2018;68:14–20 [CrossRef][PubMed]
    [Google Scholar]
  5. Peeters E, Nelis HJ, Coenye T. In vitro activity of ceftazidime, ciprofloxacin, meropenem, minocycline, tobramycin and trimethoprim/sulfamethoxazole against planktonic and sessile Burkholderia cepacia complex bacteria. J Antimicrob Chemother 2009;64:801–809 [CrossRef][PubMed]
    [Google Scholar]
  6. de Soyza A, Meachery G, Hester KL, Nicholson A, Parry G et al. Lung transplantation for patients with cystic fibrosis and Burkholderia cepacia complex infection: a single-center experience. J Heart Lung Transplant 2010;29:1395–1404 [CrossRef][PubMed]
    [Google Scholar]
  7. Desgeorges M, Mégarbané A, Guittard C, Carles S, Loiselet J et al. Cystic fibrosis in Lebanon: distribution of CFTR mutations among Arab communities. Hum Genet 1997;100:279–283 [CrossRef][PubMed]
    [Google Scholar]
  8. Farra C, Menassa R, Awwad J, Morel Y, Salameh P et al. Mutational spectrum of cystic fibrosis in the Lebanese population. J Cyst Fibros 2010;9:406–410 [CrossRef][PubMed]
    [Google Scholar]
  9. Loutet SA, Valvano MA. A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 2010;78:4088–4100 [CrossRef][PubMed]
    [Google Scholar]
  10. Coutinho CP, dos Santos SC, Madeira A, Mira NP, Moreira AS et al. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 2011;1:12 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee AH, Flibotte S, Sinha S, Paiero A, Ehrlich RL et al. Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs. Genome Res 2017;27:650–662 [CrossRef][PubMed]
    [Google Scholar]
  12. Miller RR, Hird TJ, Tang P, Zlosnik JE. Whole-genome sequencing of three clonal clinical isolates of B. cenocepacia from a patient with cystic fibrosis. PLoS One 2015;10:e0143472 [CrossRef][PubMed]
    [Google Scholar]
  13. Patil PP, Mali S, Midha S, Gautam V, Dash L et al. Genomics reveals a unique clone of Burkholderia cenocepacia harboring an actively excising novel genomic island. Front Microbiol 2017;8:590 [CrossRef][PubMed]
    [Google Scholar]
  14. Guo FB, Xiong L, Zhang KY, Dong C, Zhang FZ et al. Identification and analysis of genomic islands in Burkholderia cenocepacia AU 1054 with emphasis on pathogenicity islands. BMC Microbiol 2017;17:73 [CrossRef][PubMed]
    [Google Scholar]
  15. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 27th ed. CLSI supplement M100 2017
    [Google Scholar]
  16. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004;32:11–16 [CrossRef][PubMed]
    [Google Scholar]
  17. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  18. Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S et al. Benchmarking of methods for genomic taxonomy. J Clin Microbiol 2014;52:1529–1539 [CrossRef][PubMed]
    [Google Scholar]
  19. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017;45:D566–D573 [CrossRef][PubMed]
    [Google Scholar]
  20. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012;50:1355–1361 [CrossRef][PubMed]
    [Google Scholar]
  21. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M et al. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother 2014;58:3895–3903
    [Google Scholar]
  22. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16–W21 [CrossRef][PubMed]
    [Google Scholar]
  23. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014;38:865–891 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhang R, Ou HY, Gao F, Luo H. Identification of horizontally-transferred genomic islands and genome segmentation points by using the GC profile method. Curr Genomics 2014;15:113–121 [CrossRef][PubMed]
    [Google Scholar]
  25. Dhillon BK, Laird MR, Shay JA, Winsor GL, Lo R et al. IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res 2015;43:W104–W108 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhang R, Zhang CT. A systematic method to identify genomic islands and its applications in analyzing the genomes of Corynebacterium glutamicum and Vibrio vulnificus CMCP6 chromosome I. Bioinformatics 2004;20:612–622 [CrossRef][PubMed]
    [Google Scholar]
  27. Menard A, Monnez C, Estrada de Los Santos P, Segonds C, Caballero-Mellado J et al. Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations. Environ Microbiol 2007;9:1176–1185 [CrossRef][PubMed]
    [Google Scholar]
  28. Deng P, Wang X, Baird SM, Showmaker KC, Smith L et al. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen 2016;5:353–369 [CrossRef][PubMed]
    [Google Scholar]
  29. Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 2006;5:730–739 [CrossRef][PubMed]
    [Google Scholar]
  30. Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E et al. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 2010;11:379 [CrossRef][PubMed]
    [Google Scholar]
  31. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008;36:W181–W184 [CrossRef][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  33. Carlier A, Agnoli K, Pessi G, Suppiger A, Jenul C et al. Genome sequence of Burkholderia cenocepacia H111, a cystic fibrosis airway isolate. Genome Announc 2014;2:e00298-14 [CrossRef][PubMed]
    [Google Scholar]
  34. Drevinek P, Baldwin A, Lindenburg L, Joshi LT, Marchbank A et al. Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J Clin Microbiol 2010;48:34–40 [CrossRef][PubMed]
    [Google Scholar]
  35. Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 2009;191:261–277 [CrossRef][PubMed]
    [Google Scholar]
  36. Fila L, Dřevínek P. Burkholderia cepacia complex in cystic fibrosis in the post-epidemic period: multilocus sequence typing-based approach. Folia Microbiol 2017;62:509–514 [CrossRef][PubMed]
    [Google Scholar]
  37. Graindorge A, Menard A, Neto M, Bouvet C, Miollan R et al. Epidemiology and molecular characterization of a clone of Burkholderia cenocepacia responsible for nosocomial pulmonary tract infections in a French intensive care unit. Diagn Microbiol Infect Dis 2010;66:29–40 [CrossRef][PubMed]
    [Google Scholar]
  38. Wikraiphat C, Charoensap J, Utaisincharoen P, Wongratanacheewin S, Taweechaisupapong S et al. Comparative in vivo and in vitro analyses of putative virulence factors of Burkholderia pseudomallei using lipopolysaccharide, capsule and flagellin mutants. FEMS Immunol Med Microbiol 2009;56:253–259 [CrossRef][PubMed]
    [Google Scholar]
  39. Graindorge A, Menard A, Monnez C, Cournoyer B. Insertion sequence evolutionary patterns highlight convergent genetic inactivations and recent genomic island acquisitions among epidemic Burkholderia cenocepacia. J Med Microbiol 2012;61:394–409 [CrossRef][PubMed]
    [Google Scholar]
  40. Thomas MS. Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 2007;20:431–452 [CrossRef][PubMed]
    [Google Scholar]
  41. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007;71:413–451 [CrossRef][PubMed]
    [Google Scholar]
  42. Jendrossek V, Fillon S, Belka C, Müller I, Puttkammer B et al. Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect Immun 2003;71:2665–2673 [CrossRef][PubMed]
    [Google Scholar]
  43. Rhodes KA, Schweizer HP. Antibiotic resistance in Burkholderia species. Drug Resist Updat 2016;28:82–90 [CrossRef][PubMed]
    [Google Scholar]
  44. Sass A, Marchbank A, Tullis E, Lipuma JJ, Mahenthiralingam E. Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis. BMC Genomics 2011;12:373 [CrossRef][PubMed]
    [Google Scholar]
  45. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017;45:W30–W35 [CrossRef][PubMed]
    [Google Scholar]
  46. Langille MG, Hsiao WW, Brinkman FS. Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 2010;8:373–382 [CrossRef][PubMed]
    [Google Scholar]
  47. Langille MG, Hsiao WW, Brinkman FS. Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 2008;9:329 [CrossRef][PubMed]
    [Google Scholar]
  48. Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2001;2:376–381 [CrossRef][PubMed]
    [Google Scholar]
  49. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol 2006;14:176–182 [CrossRef][PubMed]
    [Google Scholar]
  50. Mahenthiralingam E, Vandamme P, Campbell ME, Henry DA, Gravelle AM et al. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis 2001;33:1469–1475 [CrossRef][PubMed]
    [Google Scholar]
  51. Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE et al. DNA-Based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 2000;38:3165–3173[PubMed]
    [Google Scholar]
  52. Vonberg RP, Häussler S, Vandamme P, Steinmetz I. Identification of Burkholderia cepacia complex pathogens by rapid-cycle PCR with fluorescent hybridization probes. J Med Microbiol 2006;55:721–727 [CrossRef][PubMed]
    [Google Scholar]
  53. Pretto L, de-Paris F, Mombach Pinheiro Machado AB, Francisco Martins A, Barth AL. Genetic similarity of Burkholderia cenocepacia from cystic fibrosis patients. Braz J Infect Dis 2013;17:86–89 [CrossRef][PubMed]
    [Google Scholar]
  54. Cunha MV, Leitão JH, Mahenthiralingam E, Vandamme P, Lito L et al. Molecular analysis of Burkholderia cepacia complex isolates from a Portuguese cystic fibrosis center: a 7-year study. J Clin Microbiol 2003;41:4113–4120 [CrossRef][PubMed]
    [Google Scholar]
  55. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 2016;14:150–162 [CrossRef][PubMed]
    [Google Scholar]
  56. Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 2011;108:7481–7486 [CrossRef][PubMed]
    [Google Scholar]
  57. Silva IN, Santos PM, Santos MR, Zlosnik JE, Speert DP et al. Long-term evolution of Burkholderia multivorans. mSystems 2016;1:e00029-16
    [Google Scholar]
  58. Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 2015;5:10241 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000759
Loading
/content/journal/jmm/10.1099/jmm.0.000759
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error