1887

Abstract

Purpose. To describe the antimicrobial resistance profile of Neisseria meningitidis isolates causing invasive disease in Brazil from 2009 to 2016.

Methodology. Among 3548 N. meningitidis isolates received, 2888 (81.4 %) were analysed for antimicrobial resistance using the broth microdilution technique, as recommended by the Clinical and Laboratory Standards Institute. Isolates were tested for ciprofloxacin, chloramphenicol, ceftriaxone, penicillin G, ampicillin and rifampin.

Results. All the isolates tested were susceptible to ceftriaxone, while 953 (33.0 %), 1307 (45.3 %) and 2 (0.07 %) isolates were penicillin G-, ampicillin- and rifampin-intermediate, respectively. Resistance to rifampin, ciprofloxacin and chloramphenicol was shown by three isolates (0.1 %), two isolates (0.07 %) and one (0.03 %) isolate, respectively. Although no isolates were resistant to penicillin G in the period of 2009–2016, our results show an upward trend in minimum inhibitory concentrations (MICs) for this drug as of 2010 (P<0.001). There was no significant difference between different gender and age groups of patients for reduced susceptibility to penicillin G. There was a higher frequency of isolates with reduced susceptibility to penicillin G in the South and Southeast regions (P<0.001). This reduced susceptibility was also associated with serotype 19 inside serogroup B (P<0.001).

Conclusion. Despite the decrease in susceptibility to penicillin G and ampicillin observed from 2010, the overall resistance of N. meningitidis isolates to the antimicrobials tested remained uncommon and sporadic, confirming their efficacy for chemoprophylaxis or treatment of invasive meningococcal disease (IMD) in Brazil. Continued surveillance of N. meningitidis antimicrobial susceptibility profiles is important in order to monitor variations in resistance either geographically, over time or in association with emergent clones.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000743
2018-05-02
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/6/750.html?itemId=/content/journal/jmm/10.1099/jmm.0.000743&mimeType=html&fmt=ahah

References

  1. Caniça M, Dias R, Nunes B, Carvalho L, Ferreira E. Invasive culture-confirmed Neisseria meningitidis in Portugal: evaluation of serogroups in relation to different variables and antimicrobial susceptibility (2000–2001). J Med Microbiol 2004;53:921–925 [CrossRef][PubMed]
    [Google Scholar]
  2. Taha MK, Vázquez JA, Hong E, Bennett DE, Bertrand S et al. Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis. Antimicrob Agents Chemother 2007;51:2784–2792 [CrossRef][PubMed]
    [Google Scholar]
  3. Brown EM, Fisman DN, Drews SJ, Dolman S, Rawte P et al. Epidemiology of invasive meningococcal disease with decreased susceptibility to penicillin in Ontario, Canada, 2000 to 2006. Antimicrob Agents Chemother 2010;54:1016–1021 [CrossRef][PubMed]
    [Google Scholar]
  4. Bertrand S, Carion F, Wintjens R, Mathys V, Vanhoof R. Evolutionary changes in antimicrobial resistance of invasive Neisseria meningitidis isolates in Belgium from 2000 to 2010: increasing prevalence of penicillin nonsusceptibility. Antimicrob Agents Chemother 2012;56:2268–2272 [CrossRef][PubMed]
    [Google Scholar]
  5. Harcourt BH, Anderson RD, Wu HM, Cohn AC, MacNeil JR et al. Population-based surveillance of Neisseria meningitidis antimicrobial resistance in the United States. Open Forum Infect Dis 2015;2:ofv117 [CrossRef][PubMed]
    [Google Scholar]
  6. Doença Meningocócica. In Health Surveillance Guide/Ministry of Health, Health Surveillance Secretary Brasília: Ministry of Health Brazil; 2016; Access: Word Wide Webhttp://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_1ed_atual.pdf
    [Google Scholar]
  7. Shultz TR, Tapsall JW, White PA, Newton PJ. An invasive isolate of Neisseria meningitidis showing decreased susceptibility to quinolones. Antimicrob Agents Chemother 2000;44:1116 [CrossRef][PubMed]
    [Google Scholar]
  8. Corso A, Faccone D, Miranda M, Rodriguez M, Regueira M et al. Emergence of Neisseria meningitidis with decreased susceptibility to ciprofloxacin in Argentina. J Antimicrob Chemother 2005;55:596–597 [CrossRef][PubMed]
    [Google Scholar]
  9. Mehta G, Goyal R. Emerging fluoroquinolone resistance in Neisseria meningitidis in India: cause for concern. J Antimicrob Chemother 2007;59:329–330 [CrossRef][PubMed]
    [Google Scholar]
  10. Nolte O. Rifampicin resistance in Neisseria meningitidis: evidence from a study of sibling strains, description of new mutations and notes on population genetics. J Antimicrob Chemother 1997;39:747–755 [CrossRef][PubMed]
    [Google Scholar]
  11. Taha MK, Zarantonelli ML, Ruckly C, Giorgini D, Alonso JM. Rifampin-resistant Neisseria meningitidis. Emerg Infect Dis 2006;12:859–860 [CrossRef][PubMed]
    [Google Scholar]
  12. Skoczynska A, Ruckly C, Hong E, Taha MK. Molecular characterization of resistance to rifampicin in clinical isolates of Neisseria meningitidis. Clin Microbiol Infect 2009;15:1178–1181 [CrossRef][PubMed]
    [Google Scholar]
  13. Gorla MC, de Paiva MV, Salgueiro VC, Lemos AP, Brandão AP et al. Antimicrobial susceptibility of Neisseria meningitidis strains isolated from meningitis cases in Brazil from 2006 to 2008. Enferm Infecc Microbiol Clin 2011;29:85–89 [CrossRef][PubMed]
    [Google Scholar]
  14. Ministry of Health 2016; Meningococcal Disease in Brazil. http://portalms.saude.gov.br/saude-de-a-z/meningites/11340-situacao-epidemiologica-dados (acessed 1 february 2018)
  15. Popovic T, Ajello GW, Facklam RR. Laboratory Methods for the Diagnosis of Meningitis Caused by Neisseria Meningitidis, streptococcus Pneumoniae, and Haemophilus Influenzae Atlanta,GA: Centers for Disease Control, World Health Organization; 1998
    [Google Scholar]
  16. Wedege E, Høiby EA, Rosenqvist E, Frøholm LO. Serotyping and subtyping of Neisseria meningitidis isolates by co-agglutination, dot-blotting and ELISA. J Med Microbiol 1990;31:195–201 [CrossRef][PubMed]
    [Google Scholar]
  17. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow aerobically; Approved Standard – Seventh Informational Supplement, CLSI document M7-A10. Wayne, PA: Clinical and Laboratory Standards Institute; 2015
    [Google Scholar]
  18. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth informational Supplement, CLSI document M100-S28. Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  19. Dean AG, Sullivan KM, Soe MM. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 3.01. 2013;www.openepi.com/DiagnosticTest/DiagnosticTest.htm updated 2013/04/06, (accessed 30 january 2018)
  20. Tapsall JW, Shultz T, Limnios E, Munro R, Mercer J et al. Surveillance of antibiotic resistance in invasive isolates of Neisseria meningitidis in Australia 1994–1999. Pathology 2001;33:359–361 [CrossRef][PubMed]
    [Google Scholar]
  21. Du Plessis M, von Gottberg A, Cohen C, de Gouveia L, Klugman KP. Neisseria meningitidis intermediately resistant to penicillin and causing invasive disease in South Africa in 2001 to 2005. J Clin Microbiol 2008;46:3208–3214 [CrossRef][PubMed]
    [Google Scholar]
  22. Kyaw MH, Bramley JC, Clark S, Christie P, Jones IG et al. Prevalence of moderate penicillin resistant invasive Neisseria meningitidis infection in Scotland, 1994–9. Epidemiol Infect 2002;128:149–156 [CrossRef][PubMed]
    [Google Scholar]
  23. Zerouali K, Elmdaghri N, Boudouma M, Benbachir M. Serogroups, serotypes, serosubtypes and antimicrobial susceptibility of Neisseria meningitidis isolates in Casablanca, Morocco. Eur J Clin Microbiol Infect Dis 2002;21:483–485 [CrossRef][PubMed]
    [Google Scholar]
  24. Oppenheim BA. Antibiotic resistance in Neisseria meningitidis. Clin Infect Dis 1997;24:S98–S101 [CrossRef][PubMed]
    [Google Scholar]
  25. Abeysuriya SD, Speers DJ, Gardiner J, Murray RJ. Penicillin-resistant Neisseria meningitidis bacteraemia, Kimberley region, March 2010. Commun Dis Intell Q Rep 2010;34:342–344[PubMed]
    [Google Scholar]
  26. di Caprio G, Carannante N, Bernardo M, Cuccurullo S, Pallotto C et al. Increased rate of penicillin non-susceptible strains of N. meningitidis in Naples, Italy. J Chemother 2017;29:389–390 [CrossRef][PubMed]
    [Google Scholar]
  27. Mowlaboccus S, Jolley KA, Bray JE, Pang S, Lee YT et al. Clonal expansion of new penicillin-resistant clade of Neisseria meningitidis serogroup W clonal complex 11, Australia. Emerg Infect Dis 2017;23:1364–1367 [CrossRef][PubMed]
    [Google Scholar]
  28. Moraes C, Moraes JC, Silva GD, Duarte EC. Evaluation of the impact of serogroup C meningococcal disease vaccination program in Brazil and its regions: a population-based study, 2001-2013. Mem Inst Oswaldo Cruz 2017;112:237–246 [CrossRef][PubMed]
    [Google Scholar]
  29. van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 2014;14:742–750 [CrossRef][PubMed]
    [Google Scholar]
  30. Brasil-Resolução RDC no44 de 26 de outubro de. 2010;http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2010/res0044_26_10_2010.html (acessed on February 22, 2018)
  31. Díaz A, Ochoa C, Brezmes MF, López-Urrutia L, Rivas N. Correlación entre la prescripción de antibióticos y el descenso de las resistencias a antimicrobianos en el área de salud de Zamora. Enfermedades Infecciosas y Microbiología Clínica 2009;27:153–159 [CrossRef]
    [Google Scholar]
  32. Sáez-Nieto JA, Lujan R, Berrón S, Campos J, Viñas M et al. Epidemiology and molecular basis of penicillin-resistant Neisseria meningitidis in Spain: a 5-year history (1985–1989). Clin Infect Dis 1992;14:394–402 [CrossRef][PubMed]
    [Google Scholar]
  33. Berrón S, Vázquez JA. Increase in moderate penicillin resistance and serogroup C in meningococcal strains isolated in Spain. Is there any relationship?. Clin Infect Dis 1994;18:161–165 [CrossRef][PubMed]
    [Google Scholar]
  34. Trotter CL, Fox AJ, Ramsay ME, Sadler F, Gray SJ et al. Fatal outcome from meningococcal disease–an association with meningococcal phenotype but not with reduced susceptibility to benzylpenicillin. J Med Microbiol 2002;51:855–860 [CrossRef][PubMed]
    [Google Scholar]
  35. Antignac A, Ducos-Galand M, Guiyoule A, Pirès R, Alonso JM et al. Neisseria meningitidis strains isolated from invasive infections in France (1999–2002): phenotypes and antibiotic susceptibility patterns. Clin Infect Dis 2003;37:912–920 [CrossRef][PubMed]
    [Google Scholar]
  36. Andrade AL, Minamisava R, Tomich LM, Lemos AP, Gorla MC et al. Impact of meningococcal C conjugate vaccination four years after introduction of routine childhood immunization in Brazil. Vaccine 2017;35:2025–2033 [CrossRef][PubMed]
    [Google Scholar]
  37. Gorla MC, Cassiolato AP, Pinhata JMW, de Moraes C, Corso A et al. Emergence of resistance to ciprofloxacin in Neisseria meningitidis in Brazil. J Med Microbiol 2018;67:286–288 [CrossRef][PubMed]
    [Google Scholar]
  38. Deghmane AE, Hong E, Taha MK. Emergence of meningococci with reduced susceptibility to third-generation cephalosporins. J Antimicrob Chemother 2017;72:95–98 [CrossRef][PubMed]
    [Google Scholar]
  39. Ohnishi M, Saika T, Hoshina S, Iwasaku K, Nakayama S et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis 2011;17:148–149 [CrossRef][PubMed]
    [Google Scholar]
  40. Nadel S. Treatment of meningococcal disease. J Adolesc Health 2016;59:S21–S28 [CrossRef][PubMed]
    [Google Scholar]
  41. Galimand M, Gerbaud G, Guibourdenche M, Riou JY, Courvalin P. High-level chloramphenicol resistance in Neisseria meningitidis. N Engl J Med 1998;339:868–874 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000743
Loading
/content/journal/jmm/10.1099/jmm.0.000743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error