1887

Abstract

In enterohaemorrhagic (EHEC), or genes encode Shiga toxin (Stx1 or Stx2, respectively) and are carried by prophages. The production and release of both phages and toxin occur upon initiation of the phage lytic cycle. Phages can further disseminate genes by infecting naïve bacteria in the intestine. Here, the effect of RNase E deficiency on these two virulence traits was investigated.

Cultures of the EHEC strains TEA028- containing low versus normal RNase E levels or the parental strain (TEA028) were treated with mitomycin C (MMC) to induce the phage lytic cycle. Phages and Stx2 titres were quantified by the double-agar assay and the receptor ELISA technique, respectively.

RNase E deficiency in MMC-treated cells significantly reduced the yield of infectious phages. Delayed cell lysis and the appearance of encapsidated phage DNA copies suggest a slow onset of the lytic cycle. However, these observations do not entirely explain the decrease of phage yields. phages were not detected under normal or deficient RNase E levels. After an initial delay, high levels of toxin were finally produced in MMC-treated cultures.

RNase E scarcity reduces phage production but not toxin. Normal concentrations of RNase E are likely required for correct phage morphogenesis. Our future work will address the mechanism of RNase E action on phage morphogenesis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000728
2018-05-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/5/724.html?itemId=/content/journal/jmm/10.1099/jmm.0.000728&mimeType=html&fmt=ahah

References

  1. Karmali MA, Petric M, Lim C, Fleming PC, Steele BT. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet 1983;2:1299–1300 [CrossRef][PubMed]
    [Google Scholar]
  2. O'Brien AO, Lively TA, Chen ME, Rothman SW, Formal SB. Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (SHIGA) like cytotoxin. Lancet 1983;1:702[PubMed][Crossref]
    [Google Scholar]
  3. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS et al. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis 1985;151:775–782 [CrossRef][PubMed]
    [Google Scholar]
  4. Rivero MA, Passucci JA, Rodriguez EM, Parma AE. Role and clinical course of verotoxigenic Escherichia coli infections in childhood acute diarrhoea in Argentina. J Med Microbiol 2010;59:345–352 [CrossRef][PubMed]
    [Google Scholar]
  5. Sadiq SM, Hazen TH, Rasko DA, Eppinger M. EHEC genomics: past, present, and future. Microbiol Spectr 2014;2:EHEC-0020-2013 [CrossRef][PubMed]
    [Google Scholar]
  6. Terajima J, Watanabe H, Ohnishi M, Iyoda S. Shiga toxin (verotoxin)-producing Escherichia coli in Japan. Microbiol Spectr 2014;2:EHEC-0011-2013 [CrossRef]
    [Google Scholar]
  7. Obrig TG, Louise CB, Lingwood CA, Boyd B, Barley-Maloney L et al. Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem 1993;268:15484–15488[PubMed]
    [Google Scholar]
  8. Obata F, Tohyama K, Bonev AD, Kolling GL, Keepers TR et al. Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J Infect Dis 2008;198:1398–1406 [CrossRef][PubMed]
    [Google Scholar]
  9. Obata F. Influence of Escherichia coli Shiga toxin on the mammalian central nervous system. Adv Appl Microbiol 2010;71:1–19 [CrossRef][PubMed]
    [Google Scholar]
  10. Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara T et al. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 1988;171:45–50 [CrossRef][PubMed]
    [Google Scholar]
  11. Melton-Celsa AR. Shiga Toxin (Stx) classification, structure, and function. Microbiol Spectr 2014;2:EHEC-0024-2013 [CrossRef][PubMed]
    [Google Scholar]
  12. Tesh VL, Burris JA, Owens JW, Gordon VM, Wadolkowski EA et al. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect Immun 1993;61:3392–3402[PubMed]
    [Google Scholar]
  13. Donohue-Rolfe A, Kondova I, Oswald S, Hutto D, Tzipori S. Escherichia coli O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J Infect Dis 2000;181:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  14. Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP et al. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 1999;37:497–503[PubMed]
    [Google Scholar]
  15. Leotta GA, Miliwebsky ES, Chinen I, Espinosa EM, Azzopardi K et al. Characterisation of Shiga toxin-producing Escherichia coli O157 strains isolated from humans in Argentina, Australia and New Zealand. BMC Microbiol 2008;8:46 [CrossRef][PubMed]
    [Google Scholar]
  16. Friedrich AW, Bielaszewska M, Zhang WL, Pulz M, Kuczius T et al. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 2002;185:74–84 [CrossRef][PubMed]
    [Google Scholar]
  17. Eklund M, Leino K, Siitonen A. Clinical Escherichia coli strains carrying stx genes: stx variants and stx-positive virulence profiles. J Clin Microbiol 2002;40:4585–4593 [CrossRef][PubMed]
    [Google Scholar]
  18. Werber D, Fruth A, Buchholz U, Prager R, Kramer MH et al. Strong association between Shiga toxin-producing Escherichia coli O157 and virulence genes stx2 and eae as possible explanation for predominance of serogroup O157 in patients with haemolytic uraemic syndrome. Eur J Clin Microbiol Infect Dis 2003;22:726–730 [CrossRef][PubMed]
    [Google Scholar]
  19. Ethelberg S, Olsen KE, Scheutz F, Jensen C, Schiellerup P et al. Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis 2004;10:842–847 [CrossRef][PubMed]
    [Google Scholar]
  20. Plunkett G, Rose DJ, Durfee TJ, Blattner FR. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 1999;181:1767–1778[PubMed]
    [Google Scholar]
  21. Wagner PL, Acheson DW, Waldor MK. Isogenic lysogens of diverse Shiga toxin 2-encoding bacteriophages produce markedly different amounts of shiga toxin. Infect Immun 1999;67:6710–6714[PubMed]
    [Google Scholar]
  22. Loś JM, Loś M, Wegrzyn G, Wegrzyn A. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb Pathog 2009;47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  23. Wagner PL, Acheson DW, Waldor MK. Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect Immun 2001;69:1934–1937 [CrossRef][PubMed]
    [Google Scholar]
  24. Loś JM, Loś M, Wegrzyn A, Wegrzyn G. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol Med Microbiol 2010;58:322–329 [CrossRef][PubMed]
    [Google Scholar]
  25. Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK et al. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 2001;183:2081–2085 [CrossRef][PubMed]
    [Google Scholar]
  26. Tyler JS, Mills MJ, Friedman DI. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J Bacteriol 2004;186:7670–7679 [CrossRef][PubMed]
    [Google Scholar]
  27. Koudelka AP, Hufnagel LA, Koudelka GB. Purification and characterization of the repressor of the Shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage. J Bacteriol 2004;186:7659–7669 [CrossRef][PubMed]
    [Google Scholar]
  28. Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014;38:1126–1145 [CrossRef][PubMed]
    [Google Scholar]
  29. Schmidt H, Bielaszewska M, Karch H. Transduction of enteric Escherichia coli isolates with a derivative of Shiga toxin 2-encoding bacteriophage phi3538 isolated from Escherichia coli O157:H7. Appl Environ Microbiol 1999;65:3855–2861[PubMed]
    [Google Scholar]
  30. James CE, Stanley KN, Allison HE, Flint HJ, Stewart CS et al. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Appl Environ Microbiol 2001;67:4335–4337 [CrossRef][PubMed]
    [Google Scholar]
  31. Tóth I, Schmidt H, Dow M, Malik A, Oswald E et al. Transduction of porcine enteropathogenic Escherichia coli with a derivative of a Shiga toxin 2-encoding bacteriophage in a porcine ligated ileal loop system. Appl Environ Microbiol 2003;69:7242–7247 [CrossRef][PubMed]
    [Google Scholar]
  32. Cornick NA, Helgerson AF, Mai V, Ritchie JM, Acheson DW. In vivo transduction of an Stx-encoding phage in ruminants. Appl Environ Microbiol 2006;72:5086–5088 [CrossRef][PubMed]
    [Google Scholar]
  33. Khalil RK, Skinner C, Patfield S, He X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis 2016;74:74 [CrossRef][PubMed]
    [Google Scholar]
  34. Gamage SD, Patton AK, Hanson JF, Weiss AA. Diversity and host range of Shiga toxin-encoding phage. Infect Immun 2004;72:7131–7139 [CrossRef][PubMed]
    [Google Scholar]
  35. Goswami K, Chen C, Xiaoli L, Eaton KA, Dudley EG. Coculture of Escherichia coli O157:H7 with a nonpathogenic E. coli strain increases toxin production and virulence in a germfree mouse model. Infect Immun 2015;83:4185–4193 [CrossRef][PubMed]
    [Google Scholar]
  36. Mackie GA. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 2013;11:45–57 [CrossRef][PubMed]
    [Google Scholar]
  37. Viegas SC, Mil-Homens D, Fialho AM, Arraiano CM. The virulence of Salmonella enterica Serovar Typhimurium in the insect model Galleria mellonella is impaired by mutations in RNase E and RNase III. Appl Environ Microbiol 2013;79:6124–6133 [CrossRef][PubMed]
    [Google Scholar]
  38. Yang J, Jain C, Schesser K. RNase E regulates the Yersinia type 3 secretion system. J Bacteriol 2008;190:3774–3778 [CrossRef][PubMed]
    [Google Scholar]
  39. Jarvis KG, Kaper JB. Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infect Immun 1996;64:4826–4829[PubMed]
    [Google Scholar]
  40. Stevens MP, Frankel GM. The locus of enterocyte effacement and associated virulence factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2014;2:EHEC-0007-2013 [CrossRef][PubMed]
    [Google Scholar]
  41. Lodato PB, Kaper JB. Post-transcriptional processing of the LEE4 operon in enterohaemorrhagic Escherichia coli. Mol Microbiol 2009;71:273–290 [CrossRef][PubMed]
    [Google Scholar]
  42. Lodato PB, Hsieh PK, Belasco JG, Kaper JB. The ribosome binding site of a mini-ORF protects a T3SS mRNA from degradation by RNase E. Mol Microbiol 2012;86:1167–1182 [CrossRef][PubMed]
    [Google Scholar]
  43. Gruber CC, Sperandio V. Global analysis of posttranscriptional regulation by GlmY and GlmZ in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 2015;83:1286–1295 [CrossRef][PubMed]
    [Google Scholar]
  44. Lodato PB, Thuraisamy T, Richards J, Belasco JG. Effect of RNase E deficiency on translocon protein synthesis in an RNase E-inducible strain of enterohemorrhagic Escherichia coli O157:H7. FEMS Microbiol Lett 2017;364:364 [CrossRef]
    [Google Scholar]
  45. Ho TD, Waldor MK. Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. Infect Immun 2007;75:1661–1666 [CrossRef][PubMed]
    [Google Scholar]
  46. Perna NT, Plunkett G, Burland V, Mau B, Glasner JD et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001;409:529–533 [CrossRef][PubMed]
    [Google Scholar]
  47. Marinus MG, Poteete AR. High efficiency generalized transduction in Escherichia coli O157:H7. F1000Res 2013;2:2–7 [CrossRef][PubMed]
    [Google Scholar]
  48. Miller JH. A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1992
    [Google Scholar]
  49. Casadaban MJ, Cohen SN. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 1980;138:179–207 [CrossRef][PubMed]
    [Google Scholar]
  50. Kropinsky AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP et al. Enumeration of bacteriophages by double agar overlay plaque assay. In Clokie MRJ, Kropinski AM. (editors) Bacteriophages: Methods and Protocols New York, NY: Humana Press; 2009; pp.77–80
    [Google Scholar]
  51. Basta M, Karmali M, Lingwood C. Sensitive receptor-specified enzyme-linked immunosorbent assay for Escherichia coli verocytotoxin. J Clin Microbiol 1989;27:1617–1622[PubMed]
    [Google Scholar]
  52. Garrey SM, Mackie GA. Roles of the 5'-phosphate sensor domain in RNase E. Mol Microbiol 2011;80:1613–1624 [CrossRef][PubMed]
    [Google Scholar]
  53. Vareille M, de Sablet T, Hindré T, Martin C, Gobert AP. Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 2007;104:10199–10204 [CrossRef][PubMed]
    [Google Scholar]
  54. Manasherob R, Miller C, Kim KS, Cohen SN. Ribonuclease E modulation of the bacterial SOS response. PLoS One 2012;7:e38426 [CrossRef][PubMed]
    [Google Scholar]
  55. Livny J, Friedman DI. Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol Microbiol 2004;51:1691–1704 [CrossRef][PubMed]
    [Google Scholar]
  56. Colon MP, Chakraborty D, Pevzner Y, Koudelka GB. Mechanisms that determine the differential stability of Stx+ and Stx- lysogens. Toxins 2016;8:96 [CrossRef][PubMed]
    [Google Scholar]
  57. Stead MB, Marshburn S, Mohanty BK, Mitra J, Pena Castillo L et al. Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res 2011;39:3188–3203 [CrossRef][PubMed]
    [Google Scholar]
  58. Mondal SI, Islam MR, Sawaguchi A, Asadulghani M, Ooka T et al. Genes essential for the morphogenesis of the Shiga toxin 2-transducing phage from Escherichia coli O157:H7. Sci Rep 2016;6:39036 [CrossRef][PubMed]
    [Google Scholar]
  59. Górna MW, Carpousis AJ, Luisi BF. From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q Rev Biophys 2012;45:105–145 [CrossRef][PubMed]
    [Google Scholar]
  60. Eidem TM, Roux CM, Dunman PM. RNA decay: a novel therapeutic target in bacteria. Wiley Interdiscip Rev RNA 2012;3:443–454 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000728
Loading
/content/journal/jmm/10.1099/jmm.0.000728
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error