1887

Abstract

Purpose. Cryptococcosis is acquired from the environment by the inhalation of Cryptococcus cells and may establish from an asymptomatic latent infection into pneumonia or meningoencephalitis. The genetic diversity of a Cryptococcus neoformans species complex has been investigated by several molecular tools, such as multi-locus sequence typing, amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism and microsatellite analysis. This study aimed to investigate the genotype distributions and antifungal susceptibility profiles of C. neoformans sensu lato isolates from southern Brazil.

Methodology. We studied 219 C. neoformans sensu lato isolates with mating- and serotyping, AFLP fingerprinting, microsatellite typing and antifungal susceptibility testing.

Results/Key findings. Among the isolates, 136 (69 %) were from HIV-positive patients. Only C. neoformans mating-type α and serotype A were observed. AFLP fingerprinting analysis divided the isolates into AFLP1/VNI (n=172; 78.5 %), AFLP1A/VNII (n=19; 8.7 %), AFLP1B/VNII (n=4; 1.8 %) and a new AFLP pattern AFLP1C (n=23; 10.5 %). All isolates were susceptible to tested antifungals and no correlation between antifungal susceptibility and genotypes was observed. Through microsatellite analysis, most isolates clustered in a major microsatellite complex and Simpson’s diversity index of this population was D=0.9856.

Conclusion. The majority of C. neoformans sensu stricto infections occurred in HIV-positive patients. C. neoformans AFLP1/VNI was the most frequent genotype and all antifungal drugs had high in vitro activity against this species. Microsatellite analyses showed a high genetic diversity within the regional C. neoformans sensu stricto population, and correlation between environmental and clinical isolates, as well as a temporal and geographic relationship.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000698
2018-02-20
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/4/560.html?itemId=/content/journal/jmm/10.1099/jmm.0.000698&mimeType=html&fmt=ahah

References

  1. Castro E Silva DM, Santos DC, Martins MA, Oliveira L, Szeszs MW et al. First isolation of Cryptococcus neoformans genotype VNI MAT-alpha from wood inside hollow trunks of Hymenaea courbaril. Med Mycol 2016;54:97–102 [CrossRef][PubMed]
    [Google Scholar]
  2. Chowdhary A, Rhandhawa HS, Prakash A, Meis JF. Environmental prevalence of Cryptococcus neoformans and Cryptococcus gattii in India: an update. Crit Rev Microbiol 2012;38:1–16 [CrossRef][PubMed]
    [Google Scholar]
  3. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015;78:16–48 [CrossRef][PubMed]
    [Google Scholar]
  4. May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K. Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol 2016;14:106–117 [CrossRef][PubMed]
    [Google Scholar]
  5. Henao-Martínez AF, Beckham JD. Cryptococcosis in solid organ transplant recipients. Curr Opin Infect Dis 2015;28:300–307 [CrossRef][PubMed]
    [Google Scholar]
  6. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 2017;17:873–881 [CrossRef][PubMed]
    [Google Scholar]
  7. John CC, Carabin H, Montano SM, Bangirana P, Zunt JR et al. Global research priorities for infections that affect the nervous system. Nature 2015;527:S178–S186 [CrossRef][PubMed]
    [Google Scholar]
  8. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 2015;81:85–147 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu XZ, Wang QM, Theelen B, Groenewald M, Bai FY et al. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 2015;81:1–26 [CrossRef][PubMed]
    [Google Scholar]
  10. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA et al. The case for adopting the "species complex" nomenclature for the etiologic agents of cryptococcosis. mSphere 2017;2:e00357-16 [CrossRef][PubMed]
    [Google Scholar]
  11. Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S et al. Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the Cryptococcus genus. mSphere 2017;2:e00238-17 [CrossRef][PubMed]
    [Google Scholar]
  12. Beale MA, Sabiiti W, Robertson EJ, Fuentes-Cabrejo KM, O'Hanlon SJ et al. Genotypic diversity is associated with clinical outcome and phenotype in cryptococcal meningitis across Southern Africa. PLoS Negl Trop Dis 2015;9:e0003847 [CrossRef][PubMed]
    [Google Scholar]
  13. Cogliati M, Zani A, Rickerts V, McCormick I, Desnos-Ollivier M et al. Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet Biol 2016;87:22–29 [CrossRef][PubMed]
    [Google Scholar]
  14. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 2009;47:561–570 [CrossRef][PubMed]
    [Google Scholar]
  15. Boekhout T, Theelen B, Diaz M, Fell JW, Hop WC et al. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology 2001;147:891–907 [CrossRef][PubMed]
    [Google Scholar]
  16. Brito-Santos F, Barbosa GG, Trilles L, Nishikawa MM, Wanke B et al. Environmental isolation of Cryptococcus gattii VGII from indoor dust from typical wooden houses in the deep Amazonas of the Rio Negro basin. PLoS One 2015;10:e0115866 [CrossRef][PubMed]
    [Google Scholar]
  17. Hagen F, Illnait-Zaragozí MT, Meis JF, Chew WH, Curfs-Breuker I et al. Extensive genetic diversity within the Dutch clinical Cryptococcus neoformans population. J Clin Microbiol 2012;50:1918–1926 [CrossRef][PubMed]
    [Google Scholar]
  18. Illnait-Zaragozi MT, Martínez-Machín GF, Fernández-Andreu CM, Boekhout T, Meis JF et al. Microsatellite typing of clinical and environmental Cryptococcus neoformans var. grubii isolates from Cuba shows multiple genetic lineages. PLoS One 2010;5:e9124 [CrossRef][PubMed]
    [Google Scholar]
  19. Bovers M, Hagen F, Kuramae EE, Boekhout T. Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genet Biol 2008;45:400–421 [CrossRef][PubMed]
    [Google Scholar]
  20. Aminnejad M, Diaz M, Arabatzis M, Castañeda E, Lazera M et al. Identification of novel hybrids between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGII. Mycopathologia 2012;173:337–346 [CrossRef][PubMed]
    [Google Scholar]
  21. Bovers M, Hagen F, Kuramae EE, Diaz MR, Spanjaard L et al. Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 2006;6:599–607 [CrossRef][PubMed]
    [Google Scholar]
  22. Cogliati M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica 2013;2013:1–23 [CrossRef][PubMed]
    [Google Scholar]
  23. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E et al. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis 2003;9:189–195 [CrossRef][PubMed]
    [Google Scholar]
  24. Matos CS, de Souza Andrade A, Oliveira NS, Barros TF. Microbiological characteristics of clinical isolates of Cryptococcus spp. in Bahia, Brazil: molecular types and antifungal susceptibilities. Eur J Clin Microbiol Infect Dis 2012;31:1647–1652 [CrossRef][PubMed]
    [Google Scholar]
  25. Matsumoto MT, Fusco-Almeida AM, Baeza LC, Melhem MS, Medes-Giannini MJ. Genotyping, serotyping and determination of mating-type of Cryptococcus neoformans clinical isolates from São Paulo State, Brazil. Rev Inst Med Trop Sao Paulo 2007;49:41–47 [CrossRef][PubMed]
    [Google Scholar]
  26. Souza LK, Souza Junior AH, Costa CR, Faganello J, Vainstein MH et al. Molecular typing and antifungal susceptibility of clinical and environmental Cryptococcus neoformans species complex isolates in Goiania, Brazil. Mycoses 2010;53:62–67 [CrossRef][PubMed]
    [Google Scholar]
  27. Favalessa OC, de Paula DA, Dutra V, Nakazato L, Tadano T et al. Molecular typing and in vitro antifungal susceptibility of Cryptococcus spp from patients in Midwest Brazil. J Infect Dev Ctries 2014;8:1037–1043 [CrossRef][PubMed]
    [Google Scholar]
  28. Chowdhary A, Randhawa HS, Sundar G, Kathuria S, Prakash A et al. In vitro antifungal susceptibility profiles and genotypes of 308 clinical and environmental isolates of Cryptococcus neoformans var. grubii and Cryptococcus gattii serotype B from north-western India. J Med Microbiol 2011;60:961–967 [CrossRef][PubMed]
    [Google Scholar]
  29. Guinea J, Hagen F, Peláez T, Boekhout T, Tahoune H et al. Antifungal susceptibility, serotyping, and genotyping of clinical Cryptococcus neoformans isolates collected during 18 years in a single institution in Madrid, Spain. Med Mycol 2010;48:942–948 [CrossRef][PubMed]
    [Google Scholar]
  30. Hagen F, Hare Jensen R, Meis JF, Arendrup MC. Molecular epidemiology and in vitro antifungal susceptibility testing of 108 clinical Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato isolates from Denmark. Mycoses 2016;59:576–584 [CrossRef][PubMed]
    [Google Scholar]
  31. Arsic Arsenijevic V, Pekmezovic MG, Meis JF, Hagen F. Molecular epidemiology and antifungal susceptibility of Serbian Cryptococcus neoformans isolates. Mycoses 2014;57:380–387 [CrossRef][PubMed]
    [Google Scholar]
  32. Clinical and Laboratory Standards Institute (CLSI) Reference Method for Broth Dilution antifungal Susceptibility Testing of Yeasts; Approved Standard – Third edition CLSI document M27-A3 (ISBN 1-56238-666-2) Wayne, PA: Clinical and Laboratory Standards Institute; 2008
    [Google Scholar]
  33. Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 2012;56:5898–5906 [CrossRef][PubMed]
    [Google Scholar]
  34. Espinel-Ingroff A, Chowdhary A, Cuenca-Estrella M, Fothergill A, Fuller J et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob Agents Chemother 2012;56:3107–3113 [CrossRef][PubMed]
    [Google Scholar]
  35. Espinel-Ingroff A, Chowdhary A, Gonzalez GM, Guinea J, Hagen F et al. Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for the Cryptococcus neoformans-Cryptococcus gattii species complex using the CLSI M27-A3 broth microdilution method. Antimicrob Agents Chemother 2015;59:666–668 [CrossRef][PubMed]
    [Google Scholar]
  36. Danesi P, Firacative C, Cogliati M, Otranto D, Capelli G et al. Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongst Cryptococcus species obtained from Italian veterinary isolates. FEMS Yeast Res 2014;14:897–909 [CrossRef][PubMed]
    [Google Scholar]
  37. Ellabib MS, Aboshkiwa MA, Husien WM, D'Amicis R, Cogliati M. Isolation, identification and molecular typing of Cryptococcus neoformans from Pigeon Droppings and other environmental sources in Tripoli, Libya. Mycopathologia 2016;181:603–608 [CrossRef][PubMed]
    [Google Scholar]
  38. Freire AK, dos Santos Bentes A, de Lima Sampaio I, Matsuura AB, Ogusku MM et al. Molecular characterisation of the causative agents of Cryptococcosis in patients of a tertiary healthcare facility in the state of Amazonas-Brazil. Mycoses 2012;55:e145-e150 [CrossRef][PubMed]
    [Google Scholar]
  39. Romeo O, Scordino F, Chillemi V, Criseo G. Cryptococcus neoformans/Cryptococcus gattii species complex in southern Italy: an overview on the environmental diffusion of serotypes, genotypes and mating-types. Mycopathologia 2012;174:283–291 [CrossRef][PubMed]
    [Google Scholar]
  40. Desnos-Ollivier M, Patel S, Raoux-Barbot D, Heitman J, Dromer F et al. Cryptococcosis serotypes impact outcome and provide evidence of Cryptococcus neoformans speciation. MBio 2015;6:e00311-15 [CrossRef][PubMed]
    [Google Scholar]
  41. Litvintseva AP, Mitchell TG. Population genetic analyses reveal the African origin and strain variation of Cryptococcus neoformans var. grubii. PLoS Pathog 2012;8:e1002495 [CrossRef][PubMed]
    [Google Scholar]
  42. Sun S, Billmyre RB, Mieczkowski PA, Heitman J. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. PLoS Genet 2014;10:e1004849 [CrossRef][PubMed]
    [Google Scholar]
  43. Hiremath SS, Chowdhary A, Kowshik T, Randhawa HS, Sun S et al. Long-distance dispersal and recombination in environmental populations of Cryptococcus neoformans var. grubii from India. Microbiology 2008;154:1513–1524 [CrossRef][PubMed]
    [Google Scholar]
  44. Litvintseva AP, Marra RE, Nielsen K, Heitman J, Vilgalys R et al. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot Cell 2003;2:1162–1168 [CrossRef][PubMed]
    [Google Scholar]
  45. Nyazika TK, Hagen F, Machiridza T, Kutepa M, Masanganise F et al. Cryptococcus neoformans population diversity and clinical outcomes of HIV-associated cryptococcal meningitis patients in Zimbabwe. J Med Microbiol 2016;65:1281–1288 [CrossRef][PubMed]
    [Google Scholar]
  46. Chen Y, Litvintseva AP, Frazzitta AE, Haverkamp MR, Wang L et al. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana. Mol Ecol 2015;24:3559–3571 [CrossRef][PubMed]
    [Google Scholar]
  47. da Silva BK, Freire AK, Bentes AS, Sampaio IL, Santos LO et al. Characterization of clinical isolates of the Cryptococcus neoformans-Cryptococcus gattii species complex from the Amazonas State in Brazil. Rev Iberoam Micol 2012;29:40–43 [CrossRef][PubMed]
    [Google Scholar]
  48. Cattana ME, Sosa ML, Fernández M, Rojas F, Mangiaterra M et al. Native trees of the Northeast Argentine: natural hosts of the Cryptococcus neoformans-Cryptococcus gattii species complex. Rev Iberoam Micol 2014;31:188–192 [CrossRef][PubMed]
    [Google Scholar]
  49. Refojo N, Perrotta D, Brudny M, Abrantes R, Hevia AI et al. Isolation of Cryptococcus neoformans and Cryptococcus gattii from trunk hollows of living trees in Buenos Aires City, Argentina. Med Mycol 2009;47:177–184 [CrossRef][PubMed]
    [Google Scholar]
  50. Noguera MC, Escandón P, Castañeda E. Cryptococcosis in Atlántico, Colombia: an approximation of the prevalence of this mycosis and the distribution of the etiological agent in the environment. Rev Soc Bras Med Trop 2015;48:580–586 [CrossRef][PubMed]
    [Google Scholar]
  51. González GM, Casillas-Vega N, Garza-González E, Hernández-Bello R, Rivera G et al. Molecular typing of clinical isolates of Cryptococcus neoformans/Cryptococcus gattii species complex from Northeast Mexico. Folia Microbiol 2016;61:51–56 [CrossRef][PubMed]
    [Google Scholar]
  52. Bejar V, Tello M, García R, Guevara JM, Gonzales S et al. Molecular characterization and antifungal susceptibility of Cryptococcus neoformans strains collected from a single institution in Lima, Peru. Rev Iberoam Micol 2015;32:88–92 [CrossRef][PubMed]
    [Google Scholar]
  53. Casali AK, Goulart L, Rosa E Silva LK, Ribeiro AM, Amaral AA et al. Molecular typing of clinical and environmental Cryptococcus neoformans isolates in the Brazilian state Rio Grande do Sul. FEMS Yeast Res 2003;3:405–415 [CrossRef][PubMed]
    [Google Scholar]
  54. Ferreira-Paim K, Andrade-Silva L, Fonseca FM, Ferreira TB, Mora DJ et al. MLST-based population genetic analysis in a global context reveals clonality amongst Cryptococcus neoformans var. grubii VNI isolates from HIV patients in southeastern Brazil. PLoS Negl Trop Dis 2017;11:e0005223 [CrossRef][PubMed]
    [Google Scholar]
  55. Martins LM, Wanke B, Lazéra MS, Trilles L, Barbosa GG et al. Genotypes of Cryptococcus neoformans and Cryptococcus gattii as agents of endemic cryptococcosis in Teresina, Piauí (northeastern Brazil). Mem Inst Oswaldo Cruz 2011;106:725–730 [CrossRef][PubMed]
    [Google Scholar]
  56. Debourgogne A, Iriart X, Blanchet D, Veron V, Boukhari R et al. Characteristics and specificities of Cryptococcus infections in French Guiana, 1998–2008. Med Mycol 2011;49:864–871 [CrossRef][PubMed]
    [Google Scholar]
  57. Goldstein DB, Pollock DD. Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. J Hered 1997;88:335–342 [CrossRef][PubMed]
    [Google Scholar]
  58. Taylor JW, Fisher MC. Fungal multilocus sequence typing–it's not just for bacteria. Curr Opin Microbiol 2003;6:351–356 [CrossRef][PubMed]
    [Google Scholar]
  59. Pan W, Khayhan K, Hagen F, Wahyuningsih R, Chakrabarti A et al. Resistance of Asian Cryptococcus neoformans serotype A is confined to few microsatellite genotypes. PLoS One 2012;7:e32868 [CrossRef][PubMed]
    [Google Scholar]
  60. Sweet MJ, Scriven LA, Singleton I. Microsatellites for microbiologists. Adv Appl Microbiol 2012;81:169–207 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000698
Loading
/content/journal/jmm/10.1099/jmm.0.000698
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error