1887

Abstract

Purpose. Virulent genotypes of Helicobacter pylori vacA s1m1/cagA/babA2 have been associated with severe gastric diseases. VacA, CagA and BabA are polymorphic proteins, and their association with the disease is allele-dependent. The aims of this work were: (i) to determine the prevalence of H. pylori by type of chronic gastritis; (ii) to describe the frequency of cagA, babA2 and vacA genotypes in strains from patients with different types of chronic gastritis; (iii) to characterize the variable region of cagA alleles.

Methodology. A total of 164 patients with chronic gastritis were studied. Altogether, 50 H. pylori strains were isolated, and the status of cagA, babA2 and vacA genotypes was examined by PCR. cagA EPIYA segment identification was performed using PCR and sequencing of cagA fragments of six randomly selected strains.

Results/Key findings. The overall prevalence of H. pylori was 30.5 %. Eighty percent of the isolated strains were vacA s1m1, and the cagA and babA2 genes were detected in 74 and 32 % of the strains, respectively. The most frequent genotypes were vacA s1m1/cagA/babA2 and vacA s1m1/cagA/babA2 , with 40 % (20/50) and 28 % (14/50), respectively. In cagA , the most frequent EPIYA motif was -ABC (78.4 %), and EPIYA-ABCC and -ABCCC motifs were found in 10.8 % of the strains. A modified EPIYT-B motif was found in 66.6 % of the sequenced strains.

Conclusion. H. pylori strains carrying vacA s1m1, cagA and babA2 genotypes were the most prevalent in patients with chronic gastritis from the south of Mexico. In the cagA strains, the EPIYA-ABC motif was the most common.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000660
2018-01-10
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/3/314.html?itemId=/content/journal/jmm/10.1099/jmm.0.000660&mimeType=html&fmt=ahah

References

  1. Carter FP, Frankson T, Pintard J, Edgecombe B. Seroprevalence of Helicobacter pylori infection in adults in the Bahamas. West Indian Med J 2011; 60: 662– 665 [PubMed]
    [Google Scholar]
  2. Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett 2014; 345: 196– 202 [CrossRef] [PubMed]
    [Google Scholar]
  3. Correa P, Piazuelo MB. The gastric precancerous cascade. J Dig Dis 2012; 13: 2– 9 [CrossRef] [PubMed]
    [Google Scholar]
  4. Vannella L, Lahner E, Annibale B. Risk for gastric neoplasias in patients with chronic atrophic gastritis: a critical reappraisal. World J Gastroenterol 2012; 18: 1279– 1285 [CrossRef] [PubMed]
    [Google Scholar]
  5. Warren JR. Gastric pathology associated with Helicobacter pylori. Gastroenterol Clin North Am 2000; 29: 705– 751 [CrossRef] [PubMed]
    [Google Scholar]
  6. Lazăr DC, Tăban S, Cornianu M, Faur A, Goldiş A. New advances in targeted gastric cancer treatment. World J Gastroenterol 2016; 22: 6776– 6799 [CrossRef] [PubMed]
    [Google Scholar]
  7. Gerhard M, Lehn N, Neumayer N, Borén T, Rad R et al. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci USA 1999; 96: 12778– 12783 [CrossRef] [PubMed]
    [Google Scholar]
  8. Schmitt W, Haas R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol Microbiol 1994; 12: 307– 319 [CrossRef] [PubMed]
    [Google Scholar]
  9. Junaid M, Linn AK, Javadi MB, Al-Gubare S, Ali N et al. Vacuolating cytotoxin A (VacA) - a multi-talented pore-forming toxin from Helicobacter pylori. Toxicon 2016; 118: 27– 35 [CrossRef] [PubMed]
    [Google Scholar]
  10. Atherton JC, Cao P, Peek RM, Tummuru MK, Blaser MJ et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 1995; 270: 17771– 17777 [PubMed] [Crossref]
    [Google Scholar]
  11. Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000; 287: 1497– 1500 [CrossRef] [PubMed]
    [Google Scholar]
  12. Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ et al. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 2002; 43: 971– 980 [CrossRef] [PubMed]
    [Google Scholar]
  13. Tammer I, Brandt S, Hartig R, König W, Backert S. Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 2007; 132: 1309– 1319 [CrossRef] [PubMed]
    [Google Scholar]
  14. Backert S, Tegtmeyer N, Selbach M. The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis. Helicobacter 2010; 15: 163– 176 [CrossRef] [PubMed]
    [Google Scholar]
  15. Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA 2002; 99: 14428– 14433 [CrossRef] [PubMed]
    [Google Scholar]
  16. Argent RH, Hale JL, El-Omar EM, Atherton JC. Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between western and East Asian strains, and influences on interleukin-8 secretion. J Med Microbiol 2008; 57: 1062– 1067 [CrossRef] [PubMed]
    [Google Scholar]
  17. Ferreira RM, Machado JC, Leite M, Carneiro F, Figueiredo C. The number of Helicobacter pylori CagA EPIYA C tyrosine phosphorylation motifs influences the pattern of gastritis and the development of gastric carcinoma. Histopathology 2012; 60: 992– 998 [CrossRef] [PubMed]
    [Google Scholar]
  18. Naito M, Yamazaki T, Tsutsumi R, Higashi H, Onoe K et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 2006; 130: 1181– 1190 [CrossRef] [PubMed]
    [Google Scholar]
  19. Alkout AM, Blackwell CC, Weir DM. Increased inflammatory responses of persons of blood group O to Helicobacter pylori. J Infect Dis 2000; 181: 1364– 1369 [CrossRef] [PubMed]
    [Google Scholar]
  20. Rad R, Gerhard M, Lang R, Schöniger M, Rösch T et al. The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J Immunol 2002; 168: 3033– 3041 [CrossRef] [PubMed]
    [Google Scholar]
  21. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 1998; 279: 373– 377 [CrossRef] [PubMed]
    [Google Scholar]
  22. Ishijima N, Suzuki M, Ashida H, Ichikawa Y, Kanegae Y et al. BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem 2011; 286: 25256– 25264 [CrossRef] [PubMed]
    [Google Scholar]
  23. Stolte M, Meining A. The updated Sydney system: classification and grading of gastritis as the basis of diagnosis and treatment. Can J Gastroenterol 2001; 15: 591– 598 [CrossRef] [PubMed]
    [Google Scholar]
  24. Sambrook J, MacCallum P, Russel D. Molecular Cloning: a Laboratory Manual, 3rd ed. NY, USA: Cold Spring Harbour Press; 2001
    [Google Scholar]
  25. Román-Román A, Giono-Cerezo S, Camorlinga-Ponce M, Martínez-Carrillo DN, Loaiza-Loeza S et al. vacA genotypes of Helicobacter pylori in the oral cavity and stomach of patients with chronic gastritis and gastric ulcer. Enferm Infecc Microbiol Clin 2013; 31: 130– 135 [CrossRef] [PubMed]
    [Google Scholar]
  26. Slater E, Owen RJ, Williams M, Pounder RE. Conservation of the cag pathogenicity island of Helicobacter pylori: associations with vacuolating cytotoxin allele and IS605 diversity. Gastroenterology 1999; 117: 1308– 1315 [CrossRef] [PubMed]
    [Google Scholar]
  27. Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998; 28: 37– 53 [CrossRef] [PubMed]
    [Google Scholar]
  28. Beltrán-Anaya FO, Poblete TM, Román-Román A, Reyes S, de Sampedro J et al. The EPIYA-ABCC motif pattern in CagA of Helicobacter pylori is associated with peptic ulcer and gastric cancer in Mexican population. BMC Gastroenterol 2014; 14: 223 [CrossRef] [PubMed]
    [Google Scholar]
  29. Paniagua GL, Monroy E, Rodríguez R, Arroniz S, Rodríguez C et al. Frequency of vacA, cagA and babA2 virulence markers in Helicobacter pylori strains isolated from Mexican patients with chronic gastritis. Ann Clin Microbiol Antimicrob 2009; 8: 14 [CrossRef] [PubMed]
    [Google Scholar]
  30. Chihu L, Ayala G, Mohar A, Hernández A, Herrera-Goepfert R et al. Antimicrobial resistance and characterization of Helicobacter pylori strains isolated from Mexican adults with clinical outcome. J Chemother 2005; 17: 270– 276 [CrossRef] [PubMed]
    [Google Scholar]
  31. López-Vidal Y, Ponce-de-León S, Castillo-Rojas G, Barreto-Zúñiga R, Torre-Delgadillo A. High diversity of vacA and cagA Helicobacter pylori genotypes in patients with and without gastric cancer. PLoS One 2008; 3: e3849 [CrossRef] [PubMed]
    [Google Scholar]
  32. Schultz M, Duarte I, Chianale J, Bravo R, Vergara MT et al. Frequency and histopathologic features of chronic gastritis in 300 patients without endoscopic lesions. Rev Med Chil 1996; 124: 545– 552 [PubMed]
    [Google Scholar]
  33. Suarez Ramos Mdp, Martinez Baquero DL, Cabarcas Santoya ME, Ricaurte Guerrero O. Gastropatía reactiva: frecuencia en biopsias endoscópicas evaluadas en la Universidad Nacional de Colombia. Rev Col Gastroenterol 2011; 26: 253– 260
    [Google Scholar]
  34. Chen TS, Li AF, Chang FY. Gastric reddish streaks in the intact stomach: endoscopic feature of reactive gastropathy. Pathol Int 2010; 60: 298– 304 [CrossRef] [PubMed]
    [Google Scholar]
  35. Zambon CF, Navaglia F, Basso D, Rugge M, Plebani M. Helicobacter pylori babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. J Clin Pathol 2003; 56: 287– 291 [CrossRef] [PubMed]
    [Google Scholar]
  36. Ayala G, Flores-Luna L, Hernández-Amaro D, Mendoza-Hernández G, Chihu-Amparán L et al. Association of circulating VacA-neutralizing antibodies with gastric cancer and duodenal ulcer. Cancer Causes Control 2011; 22: 1425– 1434 [CrossRef] [PubMed]
    [Google Scholar]
  37. Garza-Gonzalez E, Bosques-Padilla FJ, Tijerina-Menchaca R, Perez-Perez GI. Characterisation of Helicobacter pylori isolates from the north-eastern region of Mexico. Clin Microbiol Infect 2004; 10: 41– 45 [CrossRef] [PubMed]
    [Google Scholar]
  38. González-Valencia G, Atherton JC, Muñoz O, Dehesa M, La Garza AM et al. Helicobacter pylori vacA and cagA genotypes in Mexican adults and children. J Infect Dis 2000; 182: 1450– 1454 [CrossRef] [PubMed]
    [Google Scholar]
  39. Martínez-Carrillo DN, Garza-González E, Betancourt-Linares R, Mónico-Manzano T, Antúnez-Rivera C et al. Association of IL1B -511C/-31T haplotype and Helicobacter pylori vacA genotypes with gastric ulcer and chronic gastritis. BMC Gastroenterol 2010; 10: 126 [CrossRef] [PubMed]
    [Google Scholar]
  40. Martínez-Carrillo DN, Atrisco-Morales J, Hernández-Pando R, Reyes-Navarrete S, Betancourt-Linares R et al. Helicobacter pylori vacA and cagA genotype diversity and interferon gamma expression in patients with chronic gastritis and patients with gastric cancer. Rev Gastroenterol Mex 2014; 79: 220– 228 [CrossRef] [PubMed]
    [Google Scholar]
  41. Chen MY, He CY, Meng X, Yuan Y. Association of Helicobacter pylori babA2 with peptic ulcer disease and gastric cancer. World J Gastroenterol 2013; 19: 4242– 4251 [CrossRef] [PubMed]
    [Google Scholar]
  42. Mendoza-Elizalde S, Cortés-Márquez AC, Giono-Cerezo S, Zuñiga G, Consuelo-Sánchez A et al. Analysis of the genotypic diversity of strains of Helicobacter pylori isolated from pediatric patients in Mexico. Infect Genet Evol 2015; 29: 68– 74 [CrossRef] [PubMed]
    [Google Scholar]
  43. Reyes-Leon A, Atherton JC, Argent RH, Puente JL, Torres J. Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and its association with diversity in the cagA gene. Infect Immun 2007; 75: 3445– 3454 [CrossRef] [PubMed]
    [Google Scholar]
  44. Sicinschi LA, Correa P, Peek RM, Camargo MC, Piazuelo MB et al. CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions. Clin Microbiol Infect 2010; 16: 369– 378 [CrossRef] [PubMed]
    [Google Scholar]
  45. Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K et al. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol 1999; 37: 2274– 2279 [PubMed]
    [Google Scholar]
  46. Mattar R, dos Santos AF, Eisig JN, Rodrigues TN, Silva FM et al. No correlation of babA2 with vacA and cagA genotypes of Helicobacter pylori and grading of gastritis from peptic ulcer disease patients in Brazil. Helicobacter 2005; 10: 601– 608 [CrossRef] [PubMed]
    [Google Scholar]
  47. Torres LE, Melián K, Moreno A, Alonso J, Sabatier CA et al. Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates. World J Gastroenterol 2009; 15: 204– 210 [CrossRef] [PubMed]
    [Google Scholar]
  48. Rizzato C, Torres J, Plummer M, Muñoz N, Franceschi S et al. Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: implications for prevention. PLoS One 2012; 7: e29605 [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G et al. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions. PLoS Pathog 2015; 11: e1004621 [CrossRef] [PubMed]
    [Google Scholar]
  50. Chang YH, Wang L, Lee MS, Cheng CW, Wu CY et al. Genotypic characterization of Helicobacter pylori cagA and vacA from biopsy specimens of patients with gastroduodenal diseases. Mt Sinai J Med 2006; 73: 622– 626 [PubMed]
    [Google Scholar]
  51. Yamaoka Y, Kodama T, Kita M, Imanishi J, Kashima K et al. Relationship of vacA genotypes of Helicobacter pylori to cagA status, cytotoxin production, and clinical outcome. Helicobacter 1998; 3: 241– 253 [CrossRef] [PubMed]
    [Google Scholar]
  52. Argent RH, Zhang Y, Atherton JC. Simple method for determination of the number of Helicobacter pylori CagA variable-region EPIYA tyrosine phosphorylation motifs by PCR. J Clin Microbiol 2005; 43: 791– 795 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000660
Loading
/content/journal/jmm/10.1099/jmm.0.000660
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error