1887

Abstract

Purpose. To explore an epitope-based vaccine against Staphylococcus aureus, we screened the epitopes in the N2N3 subdomain of fibronectin-binding protein A (FnBPA) as a surface component of S. aureus.

Methodology. We expressed N2N3 proteins and prepared monoclonal antibodies (mAbs) against N2N3 by the hybridoma technique, before screening the B-cell epitopes in N2N3 using a phage-displayed random 12-mer peptide library with these mAbs against N2N3. Finally, we analysed the characters of the screened epitopes using immunofluorescence and an S. aureus infection assay.

Results. In this paper, we identified a linear B-cell epitope in N2N3 through screening a phage-displayed peptide library with a 3C3 mAb against the N2N3. The 3C3 mAb recognized the 159IETFNKANNRFSH171 sequence of the N2N3 subdomain. Subsequently, site-directed mutagenic analysis demonstrated that residues F162, K164, N167, R168 and F169 formed the core of 159IETFNKANNRFSH171, and this core motif was the minimal determinant of the B-cell epitope recognized by the 3C3 mAb. The epitope 159IETFNKANNRFSH171 showed high homology among different S. aureus strains. Moreover, this epitope was exposed on the surface of the S. aureus by using an enzyme-linked immunosorbent assay (ELISA) assay and an indirect immunofluorescence assay. As expected, the epitope peptide evoked a protective immune response against S. aureus infection in immunized mice.

Conclusion. We identified a novel linear B-cell epitope, 159IETFNKANNRFSH171, in the N2N3 subdomain of S. aureus fibronectin-binding protein A that is recognized by 3C3 mAb, which will contribute to the further study of an epitope-based vaccine candidate against S. aureus.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000633
2018-01-18
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/3/423.html?itemId=/content/journal/jmm/10.1099/jmm.0.000633&mimeType=html&fmt=ahah

References

  1. Deleo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 2010;375:1557–1568 [CrossRef][PubMed]
    [Google Scholar]
  2. Durai R, Ng PC, Hoque H. Methicillin-resistant Staphylococcus aureus: an update. Aorn J 2010;91:599–609 [CrossRef][PubMed]
    [Google Scholar]
  3. Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol 2012;34:261–280 [CrossRef][PubMed]
    [Google Scholar]
  4. Otto M. MRSA virulence and spread. Cell Microbiol 2012;14:1513–1521 [CrossRef][PubMed]
    [Google Scholar]
  5. Ma X, Wu Y, Li L, Xu Q, Hu B et al. First multicenter study on multidrug resistant bacteria carriage in Chinese ICUs. BMC Infect Dis 2015;15:358 [CrossRef][PubMed]
    [Google Scholar]
  6. Mehraj J, Akmatov MK, Strömpl J, Gatzemeier A, Layer F et al. Methicillin-sensitive and methicillin-resistant Staphylococcus aureus nasal carriage in a random sample of non-hospitalized adult population in northern Germany. PLoS One 2014;9:e107937 [CrossRef][PubMed]
    [Google Scholar]
  7. Scali F, Camussone C, Calvinho LF, Cipolla M, Zecconi A. Which are important targets in development of S. aureus mastitis vaccine?. Res Vet Sci 2015;100:88–99 [CrossRef][PubMed]
    [Google Scholar]
  8. Lee JW, O'Brien CN, Guidry AJ, Paape MJ, Shafer-Weaver KA et al. Effect of a trivalent vaccine against Staphylococcus aureus mastitis lymphocyte subpopulations, antibody production, and neutrophil phagocytosis. Can J Vet Res 2005;69:11–18[PubMed]
    [Google Scholar]
  9. Leitner G, Yadlin N, Lubashevsy E, Ezra E, Glickman A et al. Development of a Staphylococcus aureus vaccine against mastitis in dairy cows. II. Field trial. Vet Immunol Immunopathol 2003;93:153–158 [CrossRef][PubMed]
    [Google Scholar]
  10. Malito E, Faleri A, Lo Surdo P, Veggi D, Maruggi G et al. Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen. Proc Natl Acad Sci USA 2013;110:3304–3309 [CrossRef][PubMed]
    [Google Scholar]
  11. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C et al. Proof of principle for epitope-focused vaccine design. Nature 2014;507:201–206 [CrossRef][PubMed]
    [Google Scholar]
  12. Gershoni JM, Roitburd-Berman A, Siman-Tov DD, Tarnovitski Freund N, Weiss Y. Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 2007;21:145–156 [CrossRef][PubMed]
    [Google Scholar]
  13. Reason DC, Ullal A, Liberato J, Sun J, Keitel W et al. Domain specificity of the human antibody response to Bacillus anthracis protective antigen. Vaccine 2008;26:4041–4047 [CrossRef][PubMed]
    [Google Scholar]
  14. Reason D, Liberato J, Sun J, Keitel W, Zhou J. Frequency and domain specificity of toxin-neutralizing paratopes in the human antibody response to anthrax vaccine adsorbed. Infect Immun 2009;77:2030–2035 [CrossRef][PubMed]
    [Google Scholar]
  15. Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 2013;8:360–376 [CrossRef][PubMed]
    [Google Scholar]
  16. de Groot AS, Mcmurry J, Marcon L, Franco J, Rivera D et al. Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine 2005;23:2121–2131 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhu D, Williams JN, Rice J, Stevenson FK, Heckels JE et al. A DNA fusion vaccine induces bactericidal antibodies to a peptide epitope from the PorA porin of Neisseria meningitidis. Infect Immun 2008;76:334–338 [CrossRef][PubMed]
    [Google Scholar]
  18. Broughan J, Anderson R, Anderson AS. Strategies for and advances in the development of Staphylococcus aureus prophylactic vaccines. Expert Rev Vaccines 2011;10:695–708 [CrossRef][PubMed]
    [Google Scholar]
  19. Verkaik NJ, van Wamel WJ, van Belkum A. Immunotherapeutic approaches against Staphylococcus aureus. Immunotherapy 2011;3:1063–1073 [CrossRef][PubMed]
    [Google Scholar]
  20. Que YA, Haefliger JA, Piroth L, François P, Widmer E et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 2005;201:1627–1635 [CrossRef][PubMed]
    [Google Scholar]
  21. Deivanayagam CC, Wann ER, Chen W, Carson M, Rajashankar KR et al. A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. Embo J 2002;21:6660–6672 [CrossRef][PubMed]
    [Google Scholar]
  22. Keane FM, Loughman A, Valtulina V, Brennan M, Speziale P et al. Fibrinogen and elastin bind to the same region within the A domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus. Mol Microbiol 2007;63:711–723 [CrossRef][PubMed]
    [Google Scholar]
  23. Roche FM, Downer R, Keane F, Speziale P, Park PW et al. The N-terminal A domain of fibronectin-binding proteins A and B promotes adhesion of Staphylococcus aureus to elastin. J Biol Chem 2004;279:38433–38440 [CrossRef][PubMed]
    [Google Scholar]
  24. O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 2008;190:3835–3850 [CrossRef][PubMed]
    [Google Scholar]
  25. Geoghegan JA, Monk IR, O'Gara JP, Foster TJ. Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 2013;195:2675–2683 [CrossRef][PubMed]
    [Google Scholar]
  26. Huang X, Xu J, Wang Y, Guo C, Chen L et al. GP50 as a promising early diagnostic antigen for Taenia multiceps infection in goats by indirect ELISA. Parasit Vectors 2016;9:618 [CrossRef][PubMed]
    [Google Scholar]
  27. Li Y, Ning YS, Wang YD, Luo J, Wang W et al. Production of mouse monoclonal antibodies against Helicobacter pylori catalase and mapping the antigenic epitope by phage display library. Vaccine 2008;26:1263–1269 [CrossRef][PubMed]
    [Google Scholar]
  28. Wu X, Li X, Zhang Q, Wulin S, Bai X et al. Identification of a conserved B-cell epitope on duck hepatitis A type 1 virus VP1 protein. PLoS One 2015;10:e0118041 [CrossRef][PubMed]
    [Google Scholar]
  29. Yu L, Fan Z, Ma J, Tong C, Song B et al. Cross-protective effect of a novel multi-antigen-chimeric vaccine against Streptococcus and Staphylococcus aureus infection in mice. J Med Microbiol 2014;63:1732–1740 [CrossRef][PubMed]
    [Google Scholar]
  30. Su Y, Wang S, Shao J, Zhang B, Wei H. Effect of Kozak sequence on mice DNA vaccine immunization of Staphylococcus aureus adhesion fibronectin-binding protein FnBPA-A. Sheng Wu Gong Cheng Xue Bao 2013;29:458–465[PubMed]
    [Google Scholar]
  31. Zuo QF, Cai CZ, Ding HL, Wu Y, Yang LY et al. Identification of the immunodominant regions of Staphylococcus aureus fibronectin-binding protein A. PLoS One 2014;9:e95338 [CrossRef][PubMed]
    [Google Scholar]
  32. Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A et al. Phage display as a promising approach for vaccine development. J Biomed Sci 2016;23:66 [CrossRef][PubMed]
    [Google Scholar]
  33. Kronqvist N, Malm M, Rockberg J, Hjelm B, Uhlén M et al. Staphylococcal surface display in combinatorial protein engineering and epitope mapping of antibodies. Recent Pat Biotechnol 2010;4:171–182 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000633
Loading
/content/journal/jmm/10.1099/jmm.0.000633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error