1887

Abstract

Carbapenem resistance in is increasing worldwide. In Brazil, SPM-1 is the main carbapenemase identified. Little is known about the virulence factor in SPM-1 clones.

We describe a carbapenem-resistant bloodstream infection (CR-BSI) outbreak in a bone marrow transplant Unit (BMT). Twenty-nine CR-BSI cases were compared to 58 controls. Microbiological characteristics of isolates, such as sensitivity, carbapenemase gene PCR for , and PFGE are described, as well as the whole-genome sequence (WGS) of three strains.

The cultures from environmental and healthcare workers were negative. Some isolates harboured KPC and SPM. The WGS showed that the 03 strains belonged to ST277, presented the same mutations in outer membrane protein, efflux pump, and virulence genes such as those involved in adhesion, biofilm, quorum-sensing and the type III secretion system, but differ regarding the carbapenemase profile. A predominant clone-producing SPM harbouring Tn 4371 was identified and showed cross-transmission; no common source was found. Overall mortality rate among cases was 79 %. The first multivariate analysis model showed that neutropenia (=0.018), GVHD prophylaxis (=0.016) and prior use of carbapenems (=0.0089) were associated with CR-BSI. However, when MASCC21 points and platelets were added in the final multivariate analysis, only prior use of carbapenems remained as an independent risk factor for CR-BSI (=0.043).

The predominant clone belonging to ST277 showed high mortality. Carbapenem use was the only risk factor associated with CR-BSI. This finding is a wake-up call for the need to improve management in BMT units.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000631
2017-12-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/12/1722.html?itemId=/content/journal/jmm/10.1099/jmm.0.000631&mimeType=html&fmt=ahah

References

  1. Cappellano P, Viscoli C, Bruzzi P, van Lint MT, Pereira CA et al. Epidemiology and risk factors for bloodstream infections after allogeneic hematopoietic stem cell transplantion. New Microbiol 2007;30:89–99[PubMed]
    [Google Scholar]
  2. Mikulska M, del Bono V, Raiola AM, Bruno B, Gualandi F et al. Blood stream infections in allogeneic hematopoietic stem cell transplant recipients: reemergence of Gram-negative rods and increasing antibiotic resistance. Biol Blood Marrow Transplant 2009;15:47–53 [CrossRef][PubMed]
    [Google Scholar]
  3. Ortega M, Rovira M, Almela M, Marco F, de La Bellacasa JP et al. Bacterial and fungal bloodstream isolates from 796 hematopoietic stem cell transplant recipients between 1991 and 2000. Ann Hematol 2005;84:40–46 [CrossRef][PubMed]
    [Google Scholar]
  4. Hakki M, Limaye AP, Kim HW, Kirby KA, Corey L et al. Invasive Pseudomonas aeruginosa infections: high rate of recurrence and mortality after hematopoietic cell transplantation. Bone Marrow Transplant 2007;39:687–693 [CrossRef][PubMed]
    [Google Scholar]
  5. Paez J, Levin AS, Fu L, Basso M, Fonseca GH et al. Clusters of infection due to metallo-β-lactamase-producing Pseudomonas aeruginosa in stem cell transplant and haematology units. J Hosp Infect 2011;77:76–77 [CrossRef][PubMed]
    [Google Scholar]
  6. Mikulska M, del Bono V, Bruzzi P, Raiola AM, Gualandi F et al. Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection 2012;40:271–278 [CrossRef][PubMed]
    [Google Scholar]
  7. Veesenmeyer JL, Hauser AR, Lisboa T, Rello J. Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 2009;37:1777–1786 [CrossRef][PubMed]
    [Google Scholar]
  8. El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H. Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 2012;40:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  9. Peña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 2015;60:539–548 [CrossRef][PubMed]
    [Google Scholar]
  10. Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA et al. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. BMC Genomics 2015;16:883 [CrossRef][PubMed]
    [Google Scholar]
  11. Hong DJ, Bae IK, Jang I-H, Jeong SH, Kang H-K et al. Epidemiology and characteristics of metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother 2015;47:81–97 [CrossRef]
    [Google Scholar]
  12. Yong D, Toleman MA, Bell J, Ritchie B, Pratt R et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 2012;56:6154–6159 [CrossRef][PubMed]
    [Google Scholar]
  13. Silva FM, Carmo MS, Silbert S, Gales AC. SPM-1-producing Pseudomonas aeruginosa: analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. Microb Drug Resist 2011;17:215–220 [CrossRef][PubMed]
    [Google Scholar]
  14. Ledizet M, Murray TS, Puttagunta S, Slade MD, Quagliarello VJ et al. The ability of virulence factor expression by Pseudomonas aeruginosa to predict clinical disease in hospitalized patients. PLoS One 2012;7:e49578 [CrossRef][PubMed]
    [Google Scholar]
  15. Bradford PA, Urban C, Visalli M, Mariano N, Landman D et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbanem hydrolyzing KPC-2 and Inhibithor-resitant TEM30 à-lactamases in New York. Clin Infect Dis 2004;1:55–60[Crossref]
    [Google Scholar]
  16. Mendes ER, Monteiro J, Castanheira M, Andrade SS, Gales AC et al. Rapid detection and identification of Metallo-à- lactamase- encoding genes by multiplex real time PCR assay and melt curve analysis. J Clin Microbiol 2007;2:544–547[Crossref]
    [Google Scholar]
  17. Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother 2011;66:1255–1259 [CrossRef][PubMed]
    [Google Scholar]
  18. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 2009;25:1968–1969 [CrossRef][PubMed]
    [Google Scholar]
  19. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  20. Caselli D, Cesaro S, Ziino O, Zanazzo G, Manicone R. et al. Multidrug resistant Pseudomonas aeruginosa infection in children undergoing chemotherapy and hematopoietic stem cell transplantation. Haematologica 2010;95:1612–1615 [CrossRef][PubMed]
    [Google Scholar]
  21. Rizek C, Fu L, dos Santos LC, Leite G, Ramos J et al. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann Clin Microbiol Antimicrob 2014;13:43 [CrossRef][PubMed]
    [Google Scholar]
  22. Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA. et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 2007;51:1553–1555 [CrossRef][PubMed]
    [Google Scholar]
  23. Poirel L, Nordmann P, Lagrutta E, Cleary T, Munoz-Price LS. Emergence of KPC-producing Pseudomonas aeruginosa in the United States. Antimicrob Agents Chemother 2010;54:3072 [CrossRef][PubMed]
    [Google Scholar]
  24. Pasteran F, Faccone D, Gomez S, De Bunder S, Spinelli F et al. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing Pseudomonas aeruginosa in Argentina. J Antimicrob Chemother 2012;67:1291–1293 [CrossRef][PubMed]
    [Google Scholar]
  25. Jácome PR, Alves LR, Cabral AB, Lopes AC, Maciel MA. First report of KPC-producing Pseudomonas aeruginosa in Brazil. Antimicrob Agents Chemother 2012;56:4990 [CrossRef][PubMed]
    [Google Scholar]
  26. Lari AR, Azimi L, Rahbar M, Alaghehbandan R, Sattarzadeh-Tabrizi M. First report of Klebsiella pneumonia carbapenemase-producing Pseudomonas aeruginosa isolated from burn patients in Iran: phenotypic and genotypic methods. GMS Hyg Infect Control 2014;9:Doc06 [CrossRef][PubMed]
    [Google Scholar]
  27. Ramirez DG, Nicola F, Zarate S, Relloso S, Smayevsky J et al. Emergence of Pseudomonas aeruginosa with KPC-type carbapenemase in a teaching hospital: an 8-year study. J Med Microbiol 2013;62:1565–1570 [CrossRef]
    [Google Scholar]
  28. Hopkins KL, Findlay J, Mustafa N, Pike R, Parsons H et al. SPM-1 metallo-β-lactamase-producing Pseudomonas aeruginosa ST277 in the UK. J Med Microbiol 2016;65:696–697 [CrossRef]
    [Google Scholar]
  29. Richardot C, Juarez P, Jeannot K, Patry I, Plésiat P et al. Amino acid substitutions account for most MexS alterations in clinical nfxC mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016;60:2302–2310 [CrossRef][PubMed]
    [Google Scholar]
  30. Rojo-Bezares B, Cavalié L, Dubois D, Oswald E, Torres C et al. Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. J Med Microbiol 2016;65:311–319 [CrossRef][PubMed]
    [Google Scholar]
  31. Sun Q, Ba Z, Wu G, Wang W, Lin S et al. Insertion sequence ISRP10 inactivation of the oprD gene in imipenem-resistant Pseudomonas aeruginosa clinical isolates. Int J Antimicrob Agents 2016;47:375–379 [CrossRef]
    [Google Scholar]
  32. Kao CY, Chen SS, Hung KH, Wu HM, Hsueh PR et al. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol 2016;16:107 [CrossRef][PubMed]
    [Google Scholar]
  33. Kim CH, Kang HY, Kim BR, Jeon H, Lee YC et al. Mutational inactivation of OprD in carbapenem-resistant Pseudomonas aeruginosa isolates from Korean hospitals. J Microbiol 2016;54:44–49 [CrossRef]
    [Google Scholar]
  34. Gómez-Zorrilla S, Juan C, Cabot G, Camoez M, Tubau F et al. Impact of multidrug resistance on the pathogenicity of Pseudomonas aeruginosa: in vitro and in vivo studies. Int J Antimicrob Agents 2016;47:368–374 [CrossRef]
    [Google Scholar]
  35. Vonberg R-P, Weitzel-Kage D, Behnke M, Gastmeier P. Worldwide Outbreak Database: the largest collection of nosocomial outbreaks. Infection 2011;39:29–34 [CrossRef]
    [Google Scholar]
  36. Nagao M, Iinuma Y, Igawa J, Saito T, Yamashita K et al. Control of an outbreak of carbapenem-resistant Pseudomonas aeruginosa in a haemato-oncology unit. J Hosp Infect 2011;79:49–53 [CrossRef]
    [Google Scholar]
  37. Fanci R, Bartolozzi B, Sergi S, Casalone E, Pecile P et al. Molecular epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in an SCT unit. Bone Marrow Transplant 2009;43:335–338 [CrossRef]
    [Google Scholar]
  38. Bassetti M, Righi E, Viscoli C. Pseudomonas aeruginosa serious infections: mono or combination antimicrobial therapy?. Current medicinal Chemistry 2008;15:517–522 [CrossRef]
    [Google Scholar]
  39. Hawser SP. Superior activity of colistin against Pseudomonas aeruginosa clinical isolates, including multidrug-resistant isolates, from multiple infection sources from 2007 to 2009. Int J Antimicrob Agents 2011;37:587 [CrossRef]
    [Google Scholar]
  40. Hachem RY, Chemaly RF, Ahmar CA, Jiang Y, Boktour MR et al. Colistin is effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa in cancer patients. Antimicrob Agents Chemother 2007;51:1905–1911 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000631
Loading
/content/journal/jmm/10.1099/jmm.0.000631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error