1887

Abstract

Human parvovirus B19 (B19V) can cause anemia in immunocompromised patients. We aimed to investigate the presence of B19V in HIV+ adults with different CD4+ T cell counts, to recognise the frequency of B19V in these different conditions and its possible association with anemia.

We studied B19V specific IgM, IgG and DNA in 98 HIV+ patients and in 52 healthy individuals. HIV load, CD4+ counts and haemoglobin level were also determined in the patients.

No individual in the control group had detectable IgM, 41/52 (78.8 %) had IgG and 5/52 (9.6 %) had B19V DNA. Among HIV+ patients, we found 5/98 (5.1 %) IgM+, 66/98 (67.3 %) IgG+ and 15/98 (15.3 %) had B19V DNA (no significant differences between the two groups compared). Considering the CD4+ cell range in HIV patients, 37 had <200 CD4+ cells ml, 31 had 200–500, and 30 had >500. Anti-B19V IgG prevalence in patients with >500 CD4+ cells ml was significantly higher than in the rest (=0.004) and compared to the control (=0.046). B19V DNA concentration was always <10 IU ml, including 5 healthy individuals and 15 HIV+ patients. There was no significant association between B19V IgM or DNA and anemia nor between B19V DNA and HIV load.

The results indicate that B19V is not a high-risk factor for anemia in adult HIV+ patients under HAART treatment. Further studies will contribute to elucidate the mechanisms and significance of B19V DNA prevalence/persistence in adults, independently of the CD4+ cell status.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000629
2017-12-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/12/1715.html?itemId=/content/journal/jmm/10.1099/jmm.0.000629&mimeType=html&fmt=ahah

References

  1. Abarca K, Cohen BJ, Vial PA. Seroprevalence of parvovirus B19 in urban Chilean children and young adults, 1990 and 1996. Epidemiol Infect 2002;128:59–62 [CrossRef][PubMed]
    [Google Scholar]
  2. Tolfvenstam T, Enbom M, Ghebrekidan H, Rudén U, Linde A et al. Seroprevalence of viral childhood infections in Eritrea. J Clin Virol 2000;16:49–54 [CrossRef][PubMed]
    [Google Scholar]
  3. Pedranti MS, Adamo MP, Macedo R, Zapata MT. Prevalence of anti-rubella and anti-parvovirus B19 antibodies in pregnant women in the city of Córdoba, and in women of fertile age in the city of Villa Mercedes, province of San Luis. Rev Argent Microbiol 2007;39:47–50[PubMed]
    [Google Scholar]
  4. Pedranti MS, Barbero P, Wolff C, Ghietto LM, Zapata M et al. Infection and immunity for human parvovirus B19 in patients with febrile exanthema. Epidemiol Infect 2012;140:454–461 [CrossRef][PubMed]
    [Google Scholar]
  5. Broliden K, Tolfvenstam T, Norbeck O. Clinical aspects of parvovirus B19 infection. J Intern Med 2006;260:285–304 [CrossRef][PubMed]
    [Google Scholar]
  6. Young NS, Brown KE. Parvovirus B19. N Engl J Med 2004;350:586–597 [CrossRef][PubMed]
    [Google Scholar]
  7. Heegaard ED, Brown KE. Human parvovirus B19. Clin Microbiol Rev 2002;15:485–505 [CrossRef][PubMed]
    [Google Scholar]
  8. Rivera Rodríguez E, Cabanillas F. Severe anemia of rapid onset in an inmunocompromised host. Bol Asoc Med P R 2008;100:42–46[PubMed]
    [Google Scholar]
  9. Kelleher E, Mcmahon C, Mcmahon CJ. A case of parvovirus B19-induced pure red cell aplasia in a child following heart transplant. Cardiol Young 2015;25:373–375 [CrossRef][PubMed]
    [Google Scholar]
  10. de Oliveira SA, Bastos Camacho LA, Fernandes Bruno L, de Gusmão RC, de Medeiros Pereira AC et al. Acute arthropathy in patients with rash diseases: a comparative study. Clin Rheumatol 2009;28:1067–1071 [CrossRef][PubMed]
    [Google Scholar]
  11. Gadwalkar SR, Deepa DV, Katageri A, Murthy PR, Dhar R. Primary human parvovirus B19 infection in an HIV infected patient on antiretroviral therapy. J Assoc Physicians India 2013;61:910–912[PubMed]
    [Google Scholar]
  12. Morelli P, Bestetti G, Longhi E, Parravicini C, Corbellino M et al. Persistent parvovirus B19-induced anemia in an HIV-infected patient under HAART. Case report and review of literature. Eur J Clin Microbiol Infect Dis 2007;26:833–837 [CrossRef][PubMed]
    [Google Scholar]
  13. Lindblom A, Isa A, Norbeck O, Wolf S, Johansson B et al. Slow clearance of human parvovirus B19 viremia following acute infection. Clin Infect Dis 2005;41:1201–1203 [CrossRef][PubMed]
    [Google Scholar]
  14. Lefrère JJ, Servant-Delmas A, Candotti D, Mariotti M, Thomas I et al. Persistent B19 infection in immunocompetent individuals: implications for transfusion safety. Blood 2005;106:2890–2895 [CrossRef][PubMed]
    [Google Scholar]
  15. Servant-Delmas A, Lefrère JJ, Morinet F, Pillet S. Advances in human B19 erythrovirus biology. J Virol 2010;84:9658–9665 [CrossRef][PubMed]
    [Google Scholar]
  16. Koppelman MH, Rood IG, Fryer JF, Baylis SA, Cuypers HT. Parvovirus B19 genotypes 1 and 2 detection with real-time polymerase chain reaction assays. Vox Sang 2007;93:208–215 [CrossRef][PubMed]
    [Google Scholar]
  17. Saldanha J, Lelie N, Yu MW, Heath A, Albrecht J. Establishment of the first World Health Organization International Standard for human parvovirus B19 DNA nucleic acid amplification techniques. Vox Sang 2002;82:24–31 [CrossRef][PubMed]
    [Google Scholar]
  18. Baylis SA, Ma L, Padley DJ, Heath AB, Yu MW. Collaborative study to establish a World Health Organization International genotype panel for parvovirus B19 DNA nucleic acid amplification technology (NAT)-based assays. Vox Sang 2012;102:204–211 [CrossRef][PubMed]
    [Google Scholar]
  19. World Health Organization WHO International Standard 3rd WHO International Standard for parvovirus B19 for nucleic acid amplification techniques. NIBSC Confid Biol Med 2014;V. 3.0:1–2
    [Google Scholar]
  20. WHO Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity Geneva, Switzerland: World Health Organization; 2011
    [Google Scholar]
  21. Agarwal D, Chakravarty J, Chaube L, Rai M, Agrawal NR et al. High incidence of zidovudine induced anaemia in HIV infected patients in eastern India. Indian J Med Res 2010;132:386–389[PubMed]
    [Google Scholar]
  22. Liu E, Spiegelman D, Semu H, Hawkins C, Chalamilla G et al. Nutritional status and mortality among HIV-infected patients receiving antiretroviral therapy in Tanzania. J Infect Dis 2011;204:282–290 [CrossRef][PubMed]
    [Google Scholar]
  23. Sudfeld CR, Isanaka S, Mugusi FM, Aboud S, Wang M et al. Weight change at 1 mo of antiretroviral therapy and its association with subsequent mortality, morbidity, and CD4 T cell reconstitution in a Tanzanian HIV-infected adult cohort. Am J Clin Nutr 2013;97:1278–1287 [CrossRef][PubMed]
    [Google Scholar]
  24. Fuller A, Moaven L, Spelman D, Spicer WJ, Wraight H et al. Parvovirus B19 in HIV infection: a treatable cause of anemia. Pathology 1996;28:277–280 [CrossRef][PubMed]
    [Google Scholar]
  25. Kerr JR, Kane D, Crowley B, Leonard N, O'Briain S et al. Parvovirus B19 infection in AIDS patients. Int J STD AIDS 1997;8:184–186 [CrossRef][PubMed]
    [Google Scholar]
  26. He M, Zhu J, Yin H, Ke L, Gao L et al. Human immunodeficiency virus/human parvovirus B19 co-infection in blood donors and AIDS patients in Sichuan, China. Blood Transfus 2012;10:502–514 [CrossRef][PubMed]
    [Google Scholar]
  27. van Elsacker-Neile AM, Kroon FP, van der Ende ME, Salimans MM, Spaan WJ et al. Prevalence of parvovirus B19 infection in patients infected with human immunodeficiency virus. Clin Infect Dis 1996;23:1255–1260 [CrossRef][PubMed]
    [Google Scholar]
  28. Ekman A, Hokynar K, Kakkola L, Kantola K, Hedman L et al. Biological and immunological relations among human parvovirus B19 genotypes 1 to 3. J Virol 2007;81:6927–6935 [CrossRef][PubMed]
    [Google Scholar]
  29. LaMonte AC, Paul ME, Read JS, Frederick MM, Erdman DD et al. Persistent parvovirus B19 infection without the development of chronic anemia in HIV-infected and -uninfected children: the women and infants transmission study. J Infect Dis 2004;189:847–851 [CrossRef][PubMed]
    [Google Scholar]
  30. Thomas I, di Giambattista M, Gérard C, Mathys E, Hougardy V et al. Prevalence of human erythrovirus B19 DNA in healthy Belgian blood donors and correlation with specific antibodies against structural and non-structural viral proteins. Vox Sang 2003;84:300–307 [CrossRef][PubMed]
    [Google Scholar]
  31. Ke L, He M, Li C, Liu Y, Gao L et al. The prevalence of human parvovirus B19 DNA and antibodies in blood donors from four Chinese blood centers. Transfusion 2011;51:1909–1918 [CrossRef][PubMed]
    [Google Scholar]
  32. Molenaar-de Backer MW, Russcher A, Kroes AC, Koppelman MH, Lanfermeijer M et al. Detection of parvovirus B19 DNA in blood: Viruses or DNA remnants?. J Clin Virol 2016;84:19–23 [CrossRef][PubMed]
    [Google Scholar]
  33. Raguin G, Leruez-Ville M, Gregoire V, Deplanche M, Leport C et al. Low prevalence of active parvovirus B19 infection in HIV-infected patients. Eur J Clin Microbiol Infect Dis 1997;16:760–762 [CrossRef][PubMed]
    [Google Scholar]
  34. Calvet A, Pujol MO, Bertocchi M, Bastien O, Boissonnat P et al. Parvovirus B19 infection in thoracic organ transplant recipients. J Clin Virol 1999;13:37–42 [CrossRef][PubMed]
    [Google Scholar]
  35. Mizuma H, Litwin S, Zolla-Pazner S. B-cell activation in HIV infection: relationship of spontaneous immunoglobulin secretion to various immunological parameters. Clin Exp Immunol 1988;71:410–416[PubMed]
    [Google Scholar]
  36. Lane HC, Masur H, Edgar LC, Whalen G, Rook AH et al. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 1983;309:453–458 [CrossRef][PubMed]
    [Google Scholar]
  37. Lugada ES, Mermin J, Asjo B, Kaharuza F, Downing R et al. Immunoglobulin levels amongst persons with and without human immunodeficiency virus type 1 infection in Uganda and Norway. Scand J Immunol 2004;59:203–208 [CrossRef][PubMed]
    [Google Scholar]
  38. Marano G, Vaglio S, Pupella S, Facco G, Calizzani G et al. Human Parvovirus B19 and blood product safety: a tale of twenty years of improvements. Blood Transfus 2015;13:184–196 [CrossRef][PubMed]
    [Google Scholar]
  39. Nishanian P, Huskins KR, Stehn S, Detels R, Fahey JL. A simple method for improved assay demonstrates that HIV p24 antigen is present as immune complexes in most sera from HIV-infected individuals. J Infect Dis 1990;162:21–28 [CrossRef][PubMed]
    [Google Scholar]
  40. Lévican J, Torres M, Gaggero N, Corvalán R, Gaggero A. Detección de ADN de parvovirus B19 en donantes de sangre de tres hospitales en Santiago, Chile. Rev Med Chil 2011;139:143–149 [CrossRef]
    [Google Scholar]
  41. Health Protection Scotland HPS Weekly Report. HPS Wkly Rep 2013;47:133–136
    [Google Scholar]
  42. Mor O, Ofir I, Pavel R, Bassal R, Kra-Oz Z et al. Parvovirus B19V infection in Israel: prevalence and occurrence of acute infection between 2008 and 2013. Epidemiol Infect 2016;144:207–214 [CrossRef][PubMed]
    [Google Scholar]
  43. Plentz A, Würdinger M, Kudlich M, Modrow S. Low-level DNAemia of parvovirus B19 (genotypes 1-3) in adult transplant recipients is not associated with anaemia. J Clin Virol 2013;58:443–448 [CrossRef][PubMed]
    [Google Scholar]
  44. Juhl D, Görg S, Hennig H. Persistence of parvovirus B19 (B19V) DNA and humoral immune response in B19V-infected blood donors. Vox Sang 2014;107:226–232 [CrossRef][PubMed]
    [Google Scholar]
  45. Würdinger M, Modrow S, Plentz A. Impact of parvovirus B19 viremia in liver transplanted children on anemia: a retrospective study. Viruses 2017;9:149 [CrossRef][PubMed]
    [Google Scholar]
  46. Kelleher E, McMahon C, McMahon CJ. A case of parvovirus B19-induced pure red cell aplasia in a child following heart transplant. Cardiol Young 2015;25:373–375 [CrossRef][PubMed]
    [Google Scholar]
  47. Slavov SN, Kashima S, Pinto AC, Covas DT. Human parvovirus B19: general considerations and impact on patients with sickle-cell disease and thalassemia and on blood transfusions. FEMS Immunol Med Microbiol 2011;62:247–262 [CrossRef][PubMed]
    [Google Scholar]
  48. Azadmanesh K, Mohraz M, Kazemimanesh M, Aghakhani A, Foroughi M et al. Frequency and genotype of human parvovirus B19 among Iranian patients infected with HIV. J Med Virol 2015;87:1124–1129 [CrossRef][PubMed]
    [Google Scholar]
  49. Abdollahi A, Shoar S, Sheikhbahaei S, Mahdaviani B, Rasoulinejad M. Status of immunity against PVB19 in HIV-infected patients according to CD4+ cell count, and antiretroviral therapy regimen groups. Niger Med J 2014;55:20–23 [CrossRef][PubMed]
    [Google Scholar]
  50. Pitcher CJ, Quittner C, Peterson DM, Connors M, Koup RA et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat Med 1999;5:518–525 [CrossRef][PubMed]
    [Google Scholar]
  51. de Milito A, Mörch C, Sönnerborg A, Chiodi F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS 2001;15:957–964 [CrossRef][PubMed]
    [Google Scholar]
  52. Nagase H, Agematsu K, Kitano K, Takamoto M, Okubo Y et al. Mechanism of hypergammaglobulinemia by HIV infection: circulating memory B-cell reduction with plasmacytosis. Clin Immunol 2001;100:250–259 [CrossRef][PubMed]
    [Google Scholar]
  53. Bucher Praz C, Dessimoz C, Bally F, Reymond S, Troillet N. Guillain-Barré syndrome associated with primary parvovirus B19 infection in an HIV-1-infected patient. Case Rep Med 2012;2012:1–3 [CrossRef]
    [Google Scholar]
  54. Watanabe D, Taniguchi T, Otani N, Tominari S, Nishida Y et al. Immune reconstitution to parvovirus B19 and resolution of anemia in a patient treated with highly active antiretroviral therapy. J Infect Chemother 2011;17:283–287 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000629
Loading
/content/journal/jmm/10.1099/jmm.0.000629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error