1887

Abstract

Purpose. The objectives of this study were to examine environmental (hydrocarbon degrading) Pseudomonas aeruginosa isolates with Multilocus Sequence Typing (MLST) and to determine their relevant features, such as serotype, virulence genes, biofilm forming ability and hydrocarbon degrading capacity.

Methodology. The diversity of environmental isolates was assessed with an MLST scheme. Investigation of virulence determinants included serotyping, hemolytic activity test and the detection of virulence genes exoS, exoY, exoT, exoU, exoA. Biofilm forming ability was examined in a modified microtiter assay, hydrocarbon degrading capacity was determined with gravimetric methods.

Results. The majority of environmental isolates shared the same MLST profiles with isolates of cystic fibrosis (CF). Virulence patterns and serotypes were slightly connected to the phylogenetic localization, but further clinically important features such as antibiotic resistance were not. At least one of the examined environmental isolates was multidrug-resistant, virulent and had biofilm forming ability such as nosocomial P. aeruginosa and retained its hydrocarbon degradation ability.

Conclusion. The current theses that distinguish isolates originating from different sources are questionable; environmental P. aeruginosa can be a potential risk to public health and cannot be excluded as an external (non-nosocomial) source of infections, especially in patients with CF. Further studies such as pulsed-field gel electrophoresis (PFGE) and the determination of other clinically important virulence factors are needed to confirm these findings.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000589
2017-09-19
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/10/1457.html?itemId=/content/journal/jmm/10.1099/jmm.0.000589&mimeType=html&fmt=ahah

References

  1. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165: 867– 903 [CrossRef] [PubMed]
    [Google Scholar]
  2. Kang CI, Kim SH, Kim HB, Park SW, Choe YJ et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003; 37: 745– 751 [CrossRef] [PubMed]
    [Google Scholar]
  3. Pobiega M, Maciag J, Pomorska-Wesolowska M, Chmielarczyk A, Romaniszyn D et al. Urinary tract infections caused by Pseudomonas aeruginosa among children in Southern Poland: virulence factors and antibiotic resistance. J Pediatr Urol 2016; 12: 36.e1– 36.e6 [CrossRef] [PubMed]
    [Google Scholar]
  4. Fagon JY, Chastre J, Domart Y, Trouillet JL, Pierre J et al. Nosocomial pneumonia in patients receiving continuous mechanical ventilation. Am Rev Respir Dis 1989; 139: 877– 884 [Crossref]
    [Google Scholar]
  5. Pennington JE. Nosocomial respiratory infections. In Mandell G, Bennett J, Dolin R. (editors) Principles and Practice of Infectious Diseases New York, NY: Churchill Livingtone; 1995; pp. 2599– 2607
    [Google Scholar]
  6. Zavascki AP, Barth AL, Fernandes JF, Moro AL, Gonçalves AL et al. Reappraisal of Pseudomonas aeruginosa hospital-acquired pneumonia mortality in the era of metallo-β-lactamase-mediated multidrug resistance: a prospective observational study. Crit Care 2006; 10: R114 [CrossRef] [PubMed]
    [Google Scholar]
  7. Mena KD, Gerba CP. Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol 2009; 201: 71– 115 [CrossRef] [PubMed]
    [Google Scholar]
  8. Ma K-Y, Sun M-Y, Dong W, He C-Q, Chen F-L et al. Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotechnol 2016; 6: 144– 151
    [Google Scholar]
  9. Chayabutra C, Ju LK. Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Appl Environ Microbiol 2000; 66: 493– 498 [CrossRef] [PubMed]
    [Google Scholar]
  10. Eriksson M, Ka JO, Mohn WW. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 2001; 67: 5107– 5112 [CrossRef] [PubMed]
    [Google Scholar]
  11. Mishra S, Jyot J, Kuhad RC, Lal B. Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 2001; 67: 1675– 1681 [CrossRef] [PubMed]
    [Google Scholar]
  12. Wolf M, Bachofen R. Microbial degradation of bitumen matrix used in nuclear waste repositories. The Science of Nature 1991; 78: 414– 417 [CrossRef]
    [Google Scholar]
  13. Kanaly RA, Harayama S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 2000; 182: 2059– 2067 [CrossRef] [PubMed]
    [Google Scholar]
  14. Filiatrault MJ, Picardo KF, Ngai H, Passador L, Iglewski BH. Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 2006; 74: 4237– 4245 [CrossRef] [PubMed]
    [Google Scholar]
  15. Singh R, Bishnoi NR, Kirrolia A. Evaluation of Pseudomonas aeruginosa an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology. Bioresour Technol 2013; 138: 222– 234 [CrossRef] [PubMed]
    [Google Scholar]
  16. Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 2013; 14: 20983– 21005 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kaiser SJ, Mutters NT, Derosa A, Ewers C, Frank U et al. Determinants for persistence of Pseudomonas aeruginosa in hospitals: interplay between resistance, virulence and biofilm formation. Eur J Clin Microbiol Infect Dis 2017; 36: 243– 253 [CrossRef] [PubMed]
    [Google Scholar]
  18. Balcázar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 2015; 6: 1216 [CrossRef] [PubMed]
    [Google Scholar]
  19. Mara K, Decorosi F, Viti C, Giovannetti L, Papaleo MC et al. Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol 2012; 163: 161– 172 [CrossRef] [PubMed]
    [Google Scholar]
  20. Wu MH, Que CJ, Xu G, Sun YF, Ma J et al. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol Environ Saf 2016; 132: 132– 139 [CrossRef] [PubMed]
    [Google Scholar]
  21. Chen G, Liu X, Tartakevosky D, Li M. Risk assessment of three fluoroquinolone antibiotics in the groundwater recharge system. Ecotoxicol Environ Saf 2016; 133: 18– 24 [CrossRef] [PubMed]
    [Google Scholar]
  22. Eberhardt KA, Vinnemeier CD, Dehnerdt J, Rolling T, Steffen R et al. Travelers to the FIFA world cup 2014 in Brazil: health risks related to mass gatherings/sports events and implications for the summer olympic games in rio de janeiro in 2016. Travel Med Infect Dis 2016; 14: 212– 220 [CrossRef] [PubMed]
    [Google Scholar]
  23. Angeletti S, Ceccarelli G, Vita S, Dicuonzo G, Lopalco M et al. Unusual microorganisms and antimicrobial resistances in a group of Syrian migrants: sentinel surveillance data from an asylum seekers centre in Italy. Travel Med Infect Dis 2016; 14: 115– 122 [CrossRef] [PubMed]
    [Google Scholar]
  24. Pavli A, Maltezou HC, Papadakis A, Katerelos P, Saroglou G et al. Respiratory infections and gastrointestinal illness on a cruise ship: a three-year prospective study. Travel Med Infect Dis 2016; 14: 389– 397 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kaszab E, Kriszt B, Atzél B, Szabó G, Szabó I et al. The occurrence of multidrug-resistant Pseudomonas aeruginosa on hydrocarbon-contaminated sites. Microb Ecol 2010; 59: 37– 45 [CrossRef] [PubMed]
    [Google Scholar]
  26. Luczkiewicz A, Kotlarska E, Artichowicz W, Tarasewicz K, Fudala-Ksiazek S. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone. Environ Sci Pollut Res Int 2015; 22: 19823– 19834 [CrossRef] [PubMed]
    [Google Scholar]
  27. Kaszab E, Szoboszlay S, Dobolyi C, Háhn J, Pék N et al. Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour Technol 2011; 102: 1543– 1548 [CrossRef] [PubMed]
    [Google Scholar]
  28. Kaszab E, Szoboszlay S, Dura G, Radó J, Kovács B et al. Pathogenic and phylogenetic features of 2 multiresistant Pseudomonas aeruginosa strains originated from remediated sites. Int J Occup Med Environ Health 2016; 29: 503– 516 [CrossRef] [PubMed]
    [Google Scholar]
  29. Spilker T, Coenye T, Vandamme P, Lipuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 2004; 42: 2074– 2079 [CrossRef] [PubMed]
    [Google Scholar]
  30. NCCLS Diffusion ND. Supplemental Tables .M100-S10 (M2) Wayne, Pennsylvania, USA: National Committee for Clinical Laboratory Standards,Suite; 2000
    [Google Scholar]
  31. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268– 281 [CrossRef] [PubMed]
    [Google Scholar]
  32. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 2004; 42: 5644– 5649 [CrossRef] [PubMed]
    [Google Scholar]
  33. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11: 595 [CrossRef] [PubMed]
    [Google Scholar]
  34. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44: W242– W245 [CrossRef] [PubMed]
    [Google Scholar]
  35. van Delden C. Virulence factors in Pseudomonas aeruginosa. In Ramos JL. (editor) Pseudomonas, Virulence and Gene Regulation New York: Kluwer Academic/Plenum Publishers; 2004; pp. 3– 47
    [Google Scholar]
  36. Ball G, Durand E, Lazdunski A, Filloux A. A novel type II secretion system in Pseudomonas aeruginosa. Mol Microbiol 2002; 43: 475– 485 [CrossRef] [PubMed]
    [Google Scholar]
  37. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7: 654– 665 [CrossRef] [PubMed]
    [Google Scholar]
  38. Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP. Single-nucleotide-polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J Clin Microbiol 2003; 41: 3526– 3531 [CrossRef] [PubMed]
    [Google Scholar]
  39. Atzél B, Szoboszlay S, Mikuska Z, Kriszt B. Comparison of phenotypic and genotypic methods for the detection of environmental isolates of Pseudomonas aeruginosa. Int J Hyg Environ Health 2008; 211: 143– 155 [CrossRef] [PubMed]
    [Google Scholar]
  40. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 2000; 40: 175– 179 [CrossRef] [PubMed]
    [Google Scholar]
  41. Fischer S, Klockgether J, Morán Losada P, Chouvarine P, Cramer N et al. Intraclonal genome diversity of the major Pseudomonas aeruginosa clones C and PA14. Environ Microbiol Rep 2016; 8: 227– 234 [CrossRef] [PubMed]
    [Google Scholar]
  42. Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 2015; 21-22: 41– 59 [CrossRef] [PubMed]
    [Google Scholar]
  43. Kidd TJ, Ritchie SR, Ramsay KA, Grimwood K, Bell SC et al. Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS One 2012; 7: e44199 [CrossRef] [PubMed]
    [Google Scholar]
  44. Kalferstova L, Vilimovska Dedeckova K, Antuskova M, Melter O, Drevinek P. How and why to monitor Pseudomonas aeruginosa infections in the long term at a cystic fibrosis centre. J Hosp Infect 2016; 92: 54– 60 [CrossRef] [PubMed]
    [Google Scholar]
  45. Ranganathan SC, Skoric B, Ramsay KA, Carzino R, Gibson AM et al. Geographical differences in first acquisition of Pseudomonas aeruginosa in cystic fibrosis. Ann Am Thorac Soc 2013; 10: 108– 114 [CrossRef] [PubMed]
    [Google Scholar]
  46. Lu Q, Eggimann P, Luyt CE, Wolff M, Tamm M et al. Pseudomonas aeruginosa serotypes in nosocomial pneumonia: prevalence and clinical outcomes. Crit Care 2014; 18: R17 [CrossRef] [PubMed]
    [Google Scholar]
  47. Tassios PT, Gennimata V, Maniatis AN, Fock C, Legakis NJ. Emergence of multidrug resistance in ubiquitous and dominant Pseudomonas aeruginosa serogroup O11. J Clin Microbiol 1998; 36: 897– 901
    [Google Scholar]
  48. Yokota S, Noguchi H. Epitopes for human monoclonal antibodies and serotyping antisera against the O-specific polysaccharide of Pseudomonas aeruginosa O11. Carbohydr Res 1994; 261: 57– 66 [CrossRef] [PubMed]
    [Google Scholar]
  49. Hostacká A, Majtán V. Serotyping and virulence factors of Pseudomonas aeruginosa clinical isolates. Acta Microbiol Immunol Hung 1997; 44: 141– 146 [PubMed]
    [Google Scholar]
  50. Millesimo M, De Intinis G, Chirillo MG, Musso T, Savoia D. Pseudomonas aeruginosa clinical isolates: serotypes, resistance phenotypes and plasmid profiles. Eur J Epidemiol 1996; 12: 123– 129 [CrossRef] [PubMed]
    [Google Scholar]
  51. Lin HH, Huang SP, Teng HC, Ji DD, Chen YS et al. Presence of the exoU gene of Pseudomonas aeruginosa is correlated with cytotoxicity in MDCK cells but not with colonization in BALB/c mice. J Clin Microbiol 2006; 44: 4596– 4597 [CrossRef] [PubMed]
    [Google Scholar]
  52. Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 2004; 72: 6969– 6977 [CrossRef] [PubMed]
    [Google Scholar]
  53. Fleiszig SM, Wiener-Kronish JP, Miyazaki H, Vallas V, Mostov KE et al. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 1997; 65: 579– 586 [PubMed]
    [Google Scholar]
  54. Faure K, Shimabukuro D, Ajayi T, Allmond LR, Sawa T et al. O-antigen serotypes and type III secretory toxins in clinical isolates of Pseudomonas aeruginosa. J Clin Microbiol 2003; 41: 2158– 2160 [CrossRef] [PubMed]
    [Google Scholar]
  55. Beaudoin T, Aaron SD, Giesbrecht-Lewis T, Vandemheen K, Mah TF. Characterization of clonal strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Ontario, Canada. Can J Microbiol 2010; 56: 548– 557 [CrossRef] [PubMed]
    [Google Scholar]
  56. Youenou B, Brothier E, Nazaret S. Diversity among strains of Pseudomonas aeruginosa from manure and soil, evaluated by multiple locus variable number tandem repeat analysis and antibiotic resistance profiles. Res Microbiol 2014; 165: 2– 13 [CrossRef] [PubMed]
    [Google Scholar]
  57. Belhaj A, Desnoues N, Elmerich C. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Res Microbiol 2002; 153: 339– 344 [CrossRef] [PubMed]
    [Google Scholar]
  58. Cerdan P, Wasserfallen A, Rekik M, Timmis KN, Harayama S. Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J Bacteriol 1994; 176: 6074– 6081 [CrossRef] [PubMed]
    [Google Scholar]
  59. Lee J, Oh J, Min KR, Kim CK, Min KH et al. Structure of catechol 2,3-dioxygenase gene encoded in chromosomal DNA of Pseudomonas putida KF715. Biochem Biophys Res Commun 1996; 224: 831– 836 [CrossRef] [PubMed]
    [Google Scholar]
  60. Ruiz L, Domínguez MA, Ruiz N, Viñas M. Relationship between clinical and environmental isolates of Pseudomonas aeruginosa in a hospital setting. Arch Med Res 2004; 35: 251– 257 [CrossRef] [PubMed]
    [Google Scholar]
  61. Grosso-Becerra MV, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G et al. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 2014; 15: 318 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000589
Loading
/content/journal/jmm/10.1099/jmm.0.000589
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error