1887

Abstract

Borderline oxacillin-resistant Staphylococcus aureus (BORSA) represents a quite poorly understood and inadequately defined phenotype of methicillin resistance. BORSA strains show low, borderline resistance to penicillinase-resistant penicillins (PRPs), with oxacillin MICs typically equal to 1–8 µg ml, and in contrast to methicillin-resistant S. aureus (MRSA), do not have an altered penicillin-binding protein, PBP2a, encoded by the mecA or mecC gene. Their resistance is typically associated with hyperproduction of beta-lactamases or, in some cases, point mutations in PBP genes. BORSA cannot be classified as either truly methicillin-resistant or truly methicillin-susceptible strains. However, they are frequently misidentified, which poses an obvious epidemiological and therapeutic threat. BORSA strains are commonly isolated from humans and animals, and are found both in hospitals and in a community setting. The epidemiology and clinical presentation of BORSA infections seem to be similar to those for MRSA; these infections are usually more severe than those caused by methicillin-sensitive S. aureus (MSSA). Treatment of severe infections caused by BORSA may be ineffective, even with larger doses of oxacillin. The available evidence suggests that BORSA represent a frequently neglected problem, and their emergence in new environments implies that they need to be monitored and accurately distinguished from MSSA and MRSA.

Keyword(s): Antibiotic resistance , BORSA and MRSA
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000585
2017-09-12
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/10/1367.html?itemId=/content/journal/jmm/10.1099/jmm.0.000585&mimeType=html&fmt=ahah

References

  1. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 2003;111:1265–1273 [CrossRef][PubMed]
    [Google Scholar]
  2. Enright MC. The evolution of a resistant pathogen-the case of MRSA. Curr Opin Pharmacol 2003;3:474–479 [CrossRef][PubMed]
    [Google Scholar]
  3. Jevons MP, Coe AW, Parker MT. Methicillin resistance in staphylococci. Lancet 1963;1:904–907 [CrossRef][PubMed]
    [Google Scholar]
  4. García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011;11:595–603 [CrossRef][PubMed]
    [Google Scholar]
  5. Matsuhashi M, Song MD, Ishino F, Wachi M, Doi M et al. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J Bacteriol 1986;167:975–980 [CrossRef][PubMed]
    [Google Scholar]
  6. Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 1997;10:781–791[PubMed]
    [Google Scholar]
  7. Appelbaum PC. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin Infect Dis 2007;45:S165–S170 [CrossRef][PubMed]
    [Google Scholar]
  8. Hackbarth CJ, Chambers HF. Methicillin-resistant staphylococci: genetics and mechanisms of resistance. Antimicrob Agents Chemother 1989;33:991–994 [CrossRef][PubMed]
    [Google Scholar]
  9. Hanssen AM, Sollid JU. Multiple staphylococcal cassette chromosomes and allelic variants of cassette chromosome recombinases in Staphylococcus aureus and coagulase-negative staphylococci from Norway. Antimicrob Agents Chemother 2007;51:1671–1677 [CrossRef][PubMed]
    [Google Scholar]
  10. Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2001;45:1323–1336 [CrossRef][PubMed]
    [Google Scholar]
  11. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010;327:469–474 [CrossRef][PubMed]
    [Google Scholar]
  12. Nelson L, Cockram CS, Lui G, Lam R, Lam E et al. Community case of methicillin-resistant Staphylococcus aureus infection. Emerg Infect Dis 2006;12:172–174 [CrossRef][PubMed]
    [Google Scholar]
  13. Otter JA, French GL. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect Dis 2010;10:227–239 [CrossRef][PubMed]
    [Google Scholar]
  14. Fey PD, Saïd-Salim B, Rupp ME, Hinrichs SH, Boxrud DJ et al. Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2003;47:196–203 [CrossRef][PubMed]
    [Google Scholar]
  15. Ito T, Ma XX, Takeuchi F, Okuma K, Yuzawa H et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 2004;48:2637–2651 [CrossRef][PubMed]
    [Google Scholar]
  16. Ray GT, Suaya JA, Baxter R. Microbiology of skin and soft tissue infections in the age of community-acquired methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 2013;76:24–30 [CrossRef][PubMed]
    [Google Scholar]
  17. Montanari MP, Massidda O, Mingoia M, Varaldo PE. Borderline susceptibility to methicillin in Staphylococcus aureus: a new mechanism of resistance?. Microb Drug Resist 1996;2:257–260 [CrossRef][PubMed]
    [Google Scholar]
  18. Montanari MP, Tonin E, Biavasco F, Varaldo PE. Further characterization of borderline methicillin-resistant Staphylococcus aureus and analysis of penicillin-binding proteins. Antimicrob Agents Chemother 1990;34:911–913 [CrossRef][PubMed]
    [Google Scholar]
  19. Sierra-Madero JG, Knapp C, Karaffa C, Washington JA. Role of β-lactamase and different testing conditions in oxacillin-borderline-susceptible staphylococci. Antimicrob Agents Chemother 1988;32:1754–1757 [CrossRef][PubMed]
    [Google Scholar]
  20. Skinner S, Murray M, Walus T, Karlowsky JA. Failure of cloxacillin in treatment of a patient with borderline oxacillin-resistant Staphylococcus aureus endocarditis. J Clin Microbiol 2009;47:859–861 [CrossRef][PubMed]
    [Google Scholar]
  21. Mcdougal LK, Thornsberry C. The role of β-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol 1986;23:832–839[PubMed]
    [Google Scholar]
  22. Keseru JS, Gál Z, Barabás G, Benko I, Szabó I. Investigation of β-Lactamases in clinical isolates of Staphylococcus aureus for further explanation of borderline methicillin resistance. Chemotherapy 2005;51:300–304 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim TK, Chipley JR. Effect of salts on penicillinase release by Staphylococcus aureus. Microbios 1974;10A SUPPL:55–63[PubMed]
    [Google Scholar]
  24. Leahy TR, Yau YC, Atenafu E, Corey M, Ratjen F et al. Epidemiology of borderline oxacillin-resistant Staphylococcus aureus in pediatric cystic fibrosis. Pediatr Pulmonol 2011;46:n/a–96 [CrossRef][PubMed]
    [Google Scholar]
  25. Barg N, Chambers H, Kernodle D. Borderline susceptibility to antistaphylococcal penicillins is not conferred exclusively by the hyperproduction of β-lactamase. Antimicrob Agents Chemother 1991;35:1975–1979 [CrossRef][PubMed]
    [Google Scholar]
  26. Gerberding JL, Miick C, Liu HH, Chambers HF. Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 1991;35:2574–2579 [CrossRef][PubMed]
    [Google Scholar]
  27. Massidda O, Montanari MP, Varaldo PE. Evidence for a methicillin-hydrolysing β-lactamase in Staphylococcus aureus strains with borderline susceptibility to this drug. FEMS Microbiol Lett 1992;71:223–227 [CrossRef][PubMed]
    [Google Scholar]
  28. Jorgensen JH. Mechanisms of methicillin resistance in Staphylococcus aureus and methods for laboratory detection. Infect Control Hosp Epidemiol 1991;12:14–19 [CrossRef][PubMed]
    [Google Scholar]
  29. Luczak-Kadlubowska A, Krzyszton-Russjan J, Hryniewicz W. Characteristics of Staphylococcus aureus strains isolated in Poland in 1996 to 2004 that were deficient in species-specific proteins. J Clin Microbiol 2006;44:4018–4024 [CrossRef][PubMed]
    [Google Scholar]
  30. Młynarczyk A, Młynarczyk G, Jeljaszewicz J. The genome of Staphylococcus aureus: a review. Zentralbl Bakteriol 1998;287:277–314 [CrossRef][PubMed]
    [Google Scholar]
  31. Duval-Iflah Y, van Heijenoort J, Rousseau M, Raibaud P. Lysogenic conversion for multiple characters in a strain of Staphylococcus aureus. J Bacteriol 1977;130:1281–1291[PubMed]
    [Google Scholar]
  32. Balslev U, Bremmelgaard A, Svejgaard E, Havstreym J, Westh H. An outbreak of borderline oxacillin-resistant Staphylococcus aureus (BORSA) in a dermatological unit. Microb Drug Resist 2005;11:78–81 [CrossRef][PubMed]
    [Google Scholar]
  33. Khorvash F, Mostafavizadeh K, Mobasherizadeh S. Frequency of mecA gene and borderline oxacillin resistant Staphylococcus aureus in nosocomial acquired methicillin resistance Staphylococcus aureus infections. Pak J Biol Sci 2008;11:1282–1285 [CrossRef][PubMed]
    [Google Scholar]
  34. Hussain FM, Boyle-Vavra S, Daum RS. Community-acquired methicillin-resistant Staphylococcus aureus colonization in healthy children attending an outpatient pediatric clinic. Pediatr Infect Dis J 2001;20:763–767 [CrossRef][PubMed]
    [Google Scholar]
  35. Suggs AH, Maranan MC, Boyle-Vavra S, Daum RS. Methicillin-resistant and borderline methicillin-resistant asymptomatic Staphylococcus aureus colonization in children without identifiable risk factors. Pediatr Infect Dis J 1999;18:410–414 [CrossRef][PubMed]
    [Google Scholar]
  36. Sieber S, Gerber V, Jandova V, Rossano A, Evison JM et al. Evolution of multidrug-resistant Staphylococcus aureus infections in horses and colonized personnel in an equine clinic between 2005 and 2010. Microb Drug Resist 2011;17:471–478 [CrossRef][PubMed]
    [Google Scholar]
  37. Thomsen MK, Rasmussen M, Fuursted K, Westh H, Pedersen LN et al. Clonal spread of Staphylococcus aureus with reduced susceptibility to oxacillin in a dermatological hospital unit. Acta Derm Venereol 2006;86:230–234 [CrossRef][PubMed]
    [Google Scholar]
  38. Kernodle DS, Classen DC, Stratton CW, Kaiser AB. Association of borderline oxacillin-susceptible strains of Staphylococcus aureus with surgical wound infections. J Clin Microbiol 1998;36:219–222[PubMed]
    [Google Scholar]
  39. Maalej SM, Rhimi FM, Fines M, Mnif B, Leclercq R et al. Analysis of borderline oxacillin-resistant Staphylococcus aureus (BORSA) strains isolated in Tunisia. J Clin Microbiol 2012;50:3345–3348 [CrossRef][PubMed]
    [Google Scholar]
  40. Liu H, Buescher G, Lewis N, Snyder S, Jungkind D. Detection of borderline oxacillin-resistant Staphylococcus aureus and differentiation from methicillin-resistant strains. Eur J Clin Microbiol Infect Dis 1990;9:717–724 [CrossRef][PubMed]
    [Google Scholar]
  41. Naimi TS, Ledell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 2003;290:2976–2984 [CrossRef][PubMed]
    [Google Scholar]
  42. Varaldo PE. The 'borderline methicillin-susceptible' Staphylococcus aureus. J Antimicrob Chemother 1993;31:1–4 [CrossRef][PubMed]
    [Google Scholar]
  43. Nadarajah J, Lee MJ, Louie L, Jacob L, Simor AE et al. Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus isolates. J Med Microbiol 2006;55:1675–1683 [CrossRef][PubMed]
    [Google Scholar]
  44. Kaszanyitzky EJ, Egyed Z, Jánosi S, Keseru J, Gál Z et al. Staphylococci isolated from animals and food with phenotypically reduced susceptibility to β-lactamase-resistant β-lactam antibiotics. Acta Vet Hung 2004;52:7–17 [CrossRef][PubMed]
    [Google Scholar]
  45. Krupa P, Bystroń J, Bania J, Podkowik M, Empel J et al. Genotypes and oxacillin resistance of Staphylococcus aureus from chicken and chicken meat in Poland. Poult Sci 2014;93:3179–3186 [CrossRef][PubMed]
    [Google Scholar]
  46. Krupa P, Bystroń J, Podkowik M, Empel J, Mroczkowska A et al. Population structure and oxacillin resistance of Staphylococcus aureus from Pigs and pork meat in South-West of Poland. Biomed Res Int 2015;141475:1–9 [CrossRef][PubMed]
    [Google Scholar]
  47. Panchaud Y, Gerber V, Rossano A, Perreten V. Bacterial infections in horses: a retrospective study at the University Equine Clinic of Bern. Schweiz Arch Tierheilkd 2010;152:176–182 [CrossRef][PubMed]
    [Google Scholar]
  48. Bystroń J, Podkowik M, Korzekwa K, Lis E, Molenda J et al. Characterization of borderline oxacillin-resistant Staphylococcus aureus isolated from food of animal origin. J Food Prot 2010;73:1325–1327 [CrossRef][PubMed]
    [Google Scholar]
  49. Verkade E, Kluytmans J. Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect Genet Evol 2014;21:523–530 [CrossRef][PubMed]
    [Google Scholar]
  50. Chua K, Laurent F, Coombs G, Grayson ML, Howden BP. Antimicrobial resistance: not community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)! a clinician's guide to community MRSA – its evolving antimicrobial resistance and implications for therapy. Clin Infect Dis 2011;52:99–114 [CrossRef][PubMed]
    [Google Scholar]
  51. De Neeling AJ, Van den Broek MJ, Spalburg EC, Van Santen-Verheuvel MG, Dam-Deisz WD et al. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 2007;122:366–372 [CrossRef][PubMed]
    [Google Scholar]
  52. Juhász-Kaszanyitzky E, Jánosi S, Somogyi P, Dán A, Van der Graaf-van Bloois L et al. MRSA transmission between cows and humans. Emerg Infect Dis 2007;13:630–632 [CrossRef][PubMed]
    [Google Scholar]
  53. Köck R, Harlizius J, Bressan N, Laerberg R, Wieler LH et al. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Eur J Clin Microbiol Infect Dis 2009;28:1375–1382 [CrossRef][PubMed]
    [Google Scholar]
  54. Van Cleef BA, Graveland H, Haenen AP, Van de Giessen AW, Heederik D et al. Persistence of livestock-associated methicillin-resistant Staphylococcus aureus in field workers after short-term occupational exposure to pigs and veal calves. J Clin Microbiol 2011;49:1030–1033 [CrossRef][PubMed]
    [Google Scholar]
  55. Casey JA, Curriero FC, Cosgrove SE, Nachman KE, Schwartz BS. High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Intern Med 2013;173:1980–1990 [CrossRef][PubMed]
    [Google Scholar]
  56. Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing Wayne, PA: CLSI; 2009
    [Google Scholar]
  57. Felten A, Grandry B, Lagrange PH, Casin I. Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a disk diffusion method with cefoxitin and moxalactam, the Vitek 2 system, and the MRSA-screen latex agglutination test. J Clin Microbiol 2002;40:2766–2771 [CrossRef][PubMed]
    [Google Scholar]
  58. Swenson JM, Lonsway D, Mcallister S, Thompson A, Jevitt L et al. Detection of mecA-mediated resistance using reference and commercial testing methods in a collection of Staphylococcus aureus expressing borderline oxacillin MICs. Diagn Microbiol Infect Dis 2007;58:33–39 [CrossRef][PubMed]
    [Google Scholar]
  59. Chang SC, Hsieh WC, Luh KT. Influence of β-lactamase inhibitors on the activity of oxacillin against methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 1995;21:81–84 [CrossRef][PubMed]
    [Google Scholar]
  60. Cuny C, Friedrich A, Kozytska S, Layer F, Nübel U et al. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol 2010;300:109–117 [CrossRef][PubMed]
    [Google Scholar]
  61. Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H et al. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol 1991;29:2240–2244[PubMed]
    [Google Scholar]
  62. Brennan GI, Herra C, Coleman DC, O'Connell B, Shore AC. Evaluation of commercial chromogenic media for the detection of meticillin-resistant Staphylococcus aureus. J Hosp Infect 2016;92:287–292 [CrossRef][PubMed]
    [Google Scholar]
  63. Massidda O, Montanari MP, Mingoia M, Varaldo PE. Borderline methicillin-susceptible Staphylococcus aureus strains have more in common than reduced susceptibility to penicillinase-resistant penicillins. Antimicrob Agents Chemother 1996;40:2769–2774[PubMed]
    [Google Scholar]
  64. Thauvin-Eliopoulos C, Rice LB, Eliopoulos GM, Moellering RC. Efficacy of oxacillin and ampicillin-sulbactam combination in experimental endocarditis caused by β-lactamase-hyperproducing Staphylococcus aureus. Antimicrob Agents Chemother 1990;34:728–732 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000585
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error