1887

Abstract

Purpose. Streptococcus oralis and Streptococcus mitis belong to the Mitis group, which are mostly commensals in the human oral cavity. Even though S. oralis and S. mitis are oral commensals, they can be opportunistic pathogens causing infective endocarditis. A recent taxonomic re-evaluation of the Mitis group has embedded the species Streptococcus tigurinus and Streptococcus dentisani into the species S. oralis as subspecies. In this study, the distribution of virulence factors that contribute to bacterial immune evasion, colonization and adhesion was assessed in clinical strains of S. oralis (subsp. oralis, subsp. tigurinus and subsp. dentisani) and S. mitis.

Methodology. Forty clinical S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) and S. mitis genomes were annotated with the pipeline PanFunPro and aligned against the VFDB database for assessment of virulence factors.

Results/Key findings. Three homologues of pavA, psaA and lmb, encoding adhesion proteins, were present in all strains. Seven homologues of nanA, nanB, ply, lytA, lytB, lytC and iga, of importance regarding survival in blood and modulation of the human immune system, were variously present in the genomes. Few S. oralis subspecies specific differences were observed. iga homologues were identified in S. oralis subsp. oralis, whereas lytA homologues were identified in S. oralis subsp. oralis and subsp. tigurinus.

Conclusion. Differences in the presence of virulence factors among the three S. oralis subspecies were observed. The virulence gene profiles of the 40 S. mitis and S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) contribute with important new knowledge regarding these species and new subspecies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000573
2017-09-06
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/9/1316.html?itemId=/content/journal/jmm/10.1099/jmm.0.000573&mimeType=html&fmt=ahah

References

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721–5732 [CrossRef][PubMed]
    [Google Scholar]
  2. Smith DJ, Anderson JM, King WF, van Houte J, Taubman MA. Oral streptococcal colonization of infants. Oral Microbiol Immunol 1993;8:1–4 [CrossRef][PubMed]
    [Google Scholar]
  3. Matsui N, Ito M, Kuramae H, Inukai T, Sakai A et al. Infective endocarditis caused by multidrug-resistant Streptococcus mitis in a combined immunocompromised patient: an autopsy case report. J Infect Chemother 2013;19:321–325 [CrossRef][PubMed]
    [Google Scholar]
  4. Renton BJ, Clague JE, Cooke RP. Streptococcus oralis endocarditis presenting as infective discitis in an edentulous patient. Int J Cardiol 2009;137:e13-e14 [CrossRef]
    [Google Scholar]
  5. Zbinden A, Aras F, Zbinden R, Mouttet F, Schmidlin PR et al. Frequent detection of Streptococcus tigurinus in the human oral microbial flora by a specific 16S rRNA gene real-time TaqMan PCR. BMC Microbiol 2014;14:231 [CrossRef][PubMed]
    [Google Scholar]
  6. López-López A, Camelo-Castillo A, Ferrer MD, Simon-Soro Á, Mira A. Health-associated niche inhabitants as oral probiotics: the case of Streptococcus dentisani. Front Microbiol 2017;8:379 [CrossRef][PubMed]
    [Google Scholar]
  7. Zbinden A, Mueller NJ, Tarr PE, Eich G, Schulthess B et al. Streptococcus tigurinus, a novel member of the Streptococcus mitis group, causes invasive infections. J Clin Microbiol 2012;50:2969–2973 [CrossRef][PubMed]
    [Google Scholar]
  8. Jensen A, Scholz CF, Kilian M. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus. Int J Syst Evol Microbiol 2016;66:4803–4820 [CrossRef][PubMed]
    [Google Scholar]
  9. Cartwright K. Pneumococcal disease in western Europe: burden of disease, antibiotic resistance and management. Eur J Pediatr 2002;161:188–195 [CrossRef][PubMed]
    [Google Scholar]
  10. Tuomanen EI, Austrian R, Masure HR. Pathogenesis of pneumococcal infection. N Engl J Med 1995;332:1280–1284 [CrossRef][PubMed]
    [Google Scholar]
  11. De Egea V, Muñoz P, Valerio M, de Alarcón A, Lepe JA et al. Characteristics and outcome of Streptococcus pneumoniae endocarditis in the XXI century: a systematic review of 111 cases (2000-2013). Medicine 2015;94:e1562 [CrossRef][PubMed]
    [Google Scholar]
  12. Janoff EN, Rubins JB, Fasching C, Charboneau D, Rahkola JT et al. Pneumococcal IgA1 protease subverts specific protection by human IgA1. Mucosal Immunol 2014;7:249–256 [CrossRef][PubMed]
    [Google Scholar]
  13. Mitchell TJ, Dalziel CE. The biology of pneumolysin. Subcell Biochem 2014;80:145–160 [CrossRef][PubMed]
    [Google Scholar]
  14. Hotomi M, Yuasa J, Briles DE, Yamanaka N. Pneumolysin plays a key role at the initial step of establishing pneumococcal nasal colonization. Folia Microbiol 2016;61:375–383 [CrossRef]
    [Google Scholar]
  15. Walker JA, Allen RL, Falmagne P, Johnson MK, Boulnois GJ. Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect Immun 1987;55:1184–1189[PubMed]
    [Google Scholar]
  16. Ramos-Sevillano E, Moscoso M, García P, García E, Yuste J. Nasopharyngeal colonization and invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae. PLoS One 2011;6:e23626 [CrossRef][PubMed]
    [Google Scholar]
  17. Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW et al. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 2006;74:4014–4020 [CrossRef][PubMed]
    [Google Scholar]
  18. Holmes AR, Mcnab R, Millsap KW, Rohde M, Hammerschmidt S et al. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 2001;41:1395–1408 [CrossRef][PubMed]
    [Google Scholar]
  19. Hostetter MK. Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J Infect Dis 1986;153:682–693 [CrossRef][PubMed]
    [Google Scholar]
  20. Morrison KE, Lake D, Crook J, Carlone GM, Ades E et al. Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J Clin Microbiol 2000;38:434–437[PubMed]
    [Google Scholar]
  21. Bek-Thomsen M, Poulsen K, Kilian M. Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species. MBio 2012;3:e00303-12 [CrossRef][PubMed]
    [Google Scholar]
  22. Jado I, Fenoll A, Casal J, Pérez A. Identification of the psaA gene, coding for pneumococcal surface adhesin A, in viridans group streptococci other than Streptococcus pneumoniae. Clin Diagn Lab Immunol 2001;8:895–898 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang Q, Ma Q, Su D, Li Q, Yao W et al. Identification of horizontal gene transfer and recombination of PsaA gene in streptococcus mitis group. Microbiol Immunol 2010;54:313–319 [CrossRef][PubMed]
    [Google Scholar]
  24. Morales M, Martín-Galiano AJ, Domenech M, García E. Insights into the evolutionary relationships of LytA autolysin and Ply pneumolysin-like genes in Streptococcus pneumoniae and related streptococci. Genome Biol Evol 2015;7:2747–2761 [CrossRef][PubMed]
    [Google Scholar]
  25. Madhour A, Maurer P, Hakenbeck R. Cell surface proteins in S. pneumoniae, S. mitis and S. oralis. Iran J Microbiol 2011;3:58–67
    [Google Scholar]
  26. Kamio N, Imai K, Shimizu K, Cueno ME, Tamura M et al. Neuraminidase-producing oral mitis group streptococci potentially contribute to influenza viral infection and reduction in antiviral efficacy of zanamivir. Cell Mol Life Sci 2015;72:357–366 [CrossRef][PubMed]
    [Google Scholar]
  27. Rasmussen LH, Dargis R, Højholt K, Christensen JJ, Skovgaard O et al. Whole genome sequencing as a tool for phylogenetic analysis of clinical strains of Mitis group streptococci. Eur J Clin Microbiol Infect Dis 2016;35:1615–1625 [CrossRef][PubMed]
    [Google Scholar]
  28. Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis 2000;30:633–638 [CrossRef][PubMed]
    [Google Scholar]
  29. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  30. Lukjancenko O, Thomsen MC, Voldby Larsen M, Ussery DW. PanFunPro: PAN-genome analysis based on FUNctional PROfiles. F1000Res 2013;2:1–19 [CrossRef]
    [Google Scholar]
  31. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef][PubMed]
    [Google Scholar]
  32. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al. Pfam: the protein families database. Nucleic Acids Res 2014;42:D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  33. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res 2003;31:371–373 [CrossRef][PubMed]
    [Google Scholar]
  34. Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C et al. SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 2009;37:D380–D386 [CrossRef][PubMed]
    [Google Scholar]
  35. Zdobnov EM, Apweiler R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001;17:847–848 [CrossRef][PubMed]
    [Google Scholar]
  36. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef][PubMed]
    [Google Scholar]
  37. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33:D325–D328 [CrossRef][PubMed]
    [Google Scholar]
  38. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012;40:D641–D645 [CrossRef][PubMed]
    [Google Scholar]
  39. Yang J, Chen L, Sun L, Yu J, Jin Q. VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 2008;36:D539–D542 [CrossRef][PubMed]
    [Google Scholar]
  40. Abeyta M, Hardy GG, Yother J. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 2003;71:218–225 [CrossRef][PubMed]
    [Google Scholar]
  41. Rost B. Twilight zone of protein sequence alignments. Protein Eng 1999;12:85–94 [CrossRef][PubMed]
    [Google Scholar]
  42. Kilian M, Poulsen K, Blomqvist T, Håvarstein LS, Bek-Thomsen M et al. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 2008;3:e2683 [CrossRef][PubMed]
    [Google Scholar]
  43. Reinholdt J, Tomana M, Mortensen SB, Kilian M. Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect Immun 1990;58:1186–1194[PubMed]
    [Google Scholar]
  44. Kett K, Brandtzaeg P, Radl J, Haaijman JJ. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J Immunol 1986;136:3631–3635[PubMed]
    [Google Scholar]
  45. Conrads G, Barth S, Möckel M, Lenz L, van der Linden M et al. Streptococcus tigurinus is frequent among gtfR-negative Streptococcus oralis isolates and in the human oral cavity, but highly virulent strains are uncommon. J Oral Microbiol 2017;9:1307079 [CrossRef][PubMed]
    [Google Scholar]
  46. Lock RA, Hansman D, Paton JC. Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microb Pathog 1992;12:137–143 [CrossRef][PubMed]
    [Google Scholar]
  47. Benton KA, Everson MP, Briles DE. A pneumolysin-negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect Immun 1995;63:448–455[PubMed]
    [Google Scholar]
  48. García P, González MP, García E, López R, García JL. LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol 1999;31:1275–1277 [CrossRef][PubMed]
    [Google Scholar]
  49. King SJ, Whatmore AM, Dowson CG. NanA, a neuraminidase from Streptococcus pneumoniae, shows high levels of sequence diversity, at least in part through recombination with Streptococcus oralis. J Bacteriol 2005;187:5376–5386 [CrossRef][PubMed]
    [Google Scholar]
  50. Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L et al. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 2012;12:200 [CrossRef][PubMed]
    [Google Scholar]
  51. Moreillon P, Que YA, Bayer AS. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am 2002;16:297–318 [CrossRef][PubMed]
    [Google Scholar]
  52. Babu JP, Dabbous MK. Interaction of salivary fibronectin with oral streptococci. J Dent Res 1986;65:1094–1100 [CrossRef][PubMed]
    [Google Scholar]
  53. Wang Y, Ni H. Fibronectin maintains the balance between hemostasis and thrombosis. Cell Mol Life Sci 2016;73:3265–3277 [CrossRef][PubMed]
    [Google Scholar]
  54. Pracht D, Elm C, Gerber J, Bergmann S, Rohde M et al. PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun 2005;73:2680–2689 [CrossRef][PubMed]
    [Google Scholar]
  55. Madhour A, Maurer P, Hakenbeck R. Cell surface proteins in S. pneumoniae, S. mitis and S. oralis. Iran J Microbiol 2011;3:58–67[PubMed]
    [Google Scholar]
  56. Spellerberg B, Rozdzinski E, Martin S, Weber-Heynemann J, Schnitzler N et al. Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun 1999;67:871–878[PubMed]
    [Google Scholar]
  57. Berry AM, Paton JC. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 1996;64:5255–5262[PubMed]
    [Google Scholar]
  58. Abid L, Charfeddine S, Kammoun S. Isolated Streptococcus agalactiae tricuspid endocarditis in elderly patient without known predisposing factors: case report and review of the literature. J Saudi Heart Assoc 2016;28:119–123 [CrossRef][PubMed]
    [Google Scholar]
  59. Romero-Steiner S, Pilishvili T, Sampson JS, Johnson SE, Stinson A et al. Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin Diagn Lab Immunol 2003;10:246–251 [CrossRef][PubMed]
    [Google Scholar]
  60. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 2015;28:871–899 [CrossRef][PubMed]
    [Google Scholar]
  61. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 2001;293:498–506 [CrossRef][PubMed]
    [Google Scholar]
  62. Rukke HV, Kalluru RS, Repnik U, Gerlini A, José RJ et al. Protective role of the capsule and impact of serotype 4 switching on Streptococcus mitis. Infect Immun 2014;82:3790–3801 [CrossRef][PubMed]
    [Google Scholar]
  63. Skov Sørensen UB, Yao K, Yang Y, Tettelin H, Kilian M. Capsular polysaccharide expression in commensal Streptococcus species: genetic and antigenic similarities to Streptococcus pneumoniae. MBio 2016;7:e01844-16 [CrossRef][PubMed]
    [Google Scholar]
  64. Morona JK, Paton JC, Miller DC, Morona R. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol Microbiol 2000;35:1431–1442 [CrossRef][PubMed]
    [Google Scholar]
  65. Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int J Syst Evol Microbiol 2014;64:60–65 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000573
Loading
/content/journal/jmm/10.1099/jmm.0.000573
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error