1887

Abstract

Plasmid-mediated quinolone resistance (PMQR) determinants combined with mutations in quinolone resistance-determining regions (QRDRs) and clonal dissemination were investigated in 40 fluoroquinolone-resistant Klebsiella pneumoniae and Escherichia coli isolates from nosocomial and community-acquired infections. We observed nucleotide substitutions in gyrA (Ser83Ile, Val37Leu, Lys154Arg, Ser171Ala, Ser19Asn, Ile198Val, Ser83Tyr, Ser83Leu, Asp87Asn and Asp87Gly) and parC genes (Ser80Ile, Glu84Lys, Ala129Ser, Val141Ala and Glu84Gly). Two novel substitutions were detected in the gyrA gene (Val37Leu and Ile198Val). The presence of PMQR genes predominated in community isolates (55.5 %). In addition to the frequent presence of the class 1 integron in isolates from community-acquired infections, the genetic similarity results obtained by PFGE showed high genomic diversity. This study suggests that management of multidrug-resistant Enterobacteriaceae isolates from the community are a possible source of genetic mobile elements that carry genes that confer resistance to fluoroquinolones. More attention should be paid to the surveillance of community-acquired infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000551
2017-08-04
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/8/1144.html?itemId=/content/journal/jmm/10.1099/jmm.0.000551&mimeType=html&fmt=ahah

References

  1. Seyedpour SM, Eftekhar F. Quinolone susceptibility and detection of qnr and aac(6')-Ib-cr genes in community isolates of Klebsiella pneumoniae. Jundishapur J Microbiol 2014;7:e11136 [CrossRef][PubMed]
    [Google Scholar]
  2. Piekarska K, Wołkowicz T, Zacharczuk K, Rzeczkowska M, Chróst A et al. Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. Int J Antimicrob Agents 2015;45:238–243 [CrossRef][PubMed]
    [Google Scholar]
  3. Tanwar J, das S, Fatima Z, Hameed S. Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014;2014:1–7 [CrossRef]
    [Google Scholar]
  4. Ruppé Étienne, Woerther P-L, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 2015;5:21[CrossRef]
    [Google Scholar]
  5. Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis 2012;2012:1–37 [CrossRef][PubMed]
    [Google Scholar]
  6. Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual A et al. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 2011;17:149–182 [CrossRef][PubMed]
    [Google Scholar]
  7. Martínez-Martínez L, Eliecer Cano M, Manuel Rodríguez-Martínez J, Calvo J, Pascual A. Plasmid-mediated quinolone resistance. Expert Rev Anti Infect Ther 2008;6:685–711 [CrossRef][PubMed]
    [Google Scholar]
  8. Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 2006;42:S82–S89 [CrossRef][PubMed]
    [Google Scholar]
  9. Davey PG, Marwick C. Appropriate vs. inappropriate antimicrobial therapy. Clin Microbiol Infect 2008;14:15–21 [CrossRef][PubMed]
    [Google Scholar]
  10. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care 2014;18:596 [CrossRef][PubMed]
    [Google Scholar]
  11. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010;10:441–451 [CrossRef][PubMed]
    [Google Scholar]
  12. Bouchillon S, Hoban DJ, Badal R, Hawser S. Fluoroquinolone resistance among gram-negative urinary tract pathogens: global smart program results, 2009-2010. Open Microbiol J 2012;6:74–78 [CrossRef][PubMed]
    [Google Scholar]
  13. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268–281 [CrossRef][PubMed]
    [Google Scholar]
  14. Gulen TA, Guner R, Celikbilek N, Keske S, Tasyaran M. Clinical importance and cost of bacteremia caused by nosocomial multi drug resistant Acinetobacter baumannii. Int J Infect Dis 2015;38:32–35 [CrossRef][PubMed]
    [Google Scholar]
  15. Gilbert DN, Moellering RC, Eliopoulos GM, Sande MA. The Sanford Guide to Antimicrobial Therapy Sperryville, VA, Antimicrobial Therapy 2007; p.37
    [Google Scholar]
  16. Lodise TP, Patel N, Kwa A, Graves J, Furuno JP et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007;51:3510–3515 [CrossRef][PubMed]
    [Google Scholar]
  17. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E et al. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 2010;65:601–604 [CrossRef][PubMed]
    [Google Scholar]
  18. Capuano VSC. Estudo comparativo de métodos fenotípicos e biomoleculares para determinação de resistência an antibióticos em cepas de Salmonella spp isoladas de coiro e carcaça de bovinos e produtos cárneos. Masters Dissertation. Universidade De São Paulo, Faculdade De Ciências Farmacêuticas. São Paulo 2012
    [Google Scholar]
  19. CLSI Performance Standards for Antimicrobial Susceptibility Testing; Document M100-S24 Wayne, PA: Clinical and Laboratory Standards Institute; 2014
    [Google Scholar]
  20. Galetti R. Estudo de Pseudomonas Aeruginosa Produtoras de Metalo-Beta-Lactamases e de Genes Envolvidos Na Resistência Aos Carbapenêmicos. 49 F Master Thesis - Faculdade De Ciências Farmacêuticas, Universidade De São Paulo, Ribeirão Preto, Brazil 2010
    [Google Scholar]
  21. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 2013;4:47 [CrossRef][PubMed]
    [Google Scholar]
  22. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacol Ther 2015;40:277–283[PubMed]
    [Google Scholar]
  23. Chakrabarty RP, Sultana M, Shehreen S, Akter S, Hossain MA. Contribution of target alteration, protection and efflux pump in achieving high ciprofloxacin resistance in Enterobacteriaceae. AMB Express 2016;6:126 [CrossRef][PubMed]
    [Google Scholar]
  24. Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L et al. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat 2016;29:13–29 [CrossRef][PubMed]
    [Google Scholar]
  25. Yang HY, Nam YS, Lee HJ. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can J Infect Dis Med Microbiol 2014;25:163–169[PubMed]
    [Google Scholar]
  26. Bado I, Gutiérrez C, García-Fulgueiras V, Cordeiro NF, Araújo Pirez L et al. CTX-M-15 in combination with aac(6')-Ib-cr is the most prevalent mechanism of resistance both in Escherichia coli and Klebsiella pneumoniae, including K. pneumoniae ST258, in an ICU in Uruguay. J Glob Antimicrob Resist 2016;6:5–9 [CrossRef][PubMed]
    [Google Scholar]
  27. Moreira APA. Infecções hospitalares por Enterobacteriaceae produtora de β-lactamase de amplo espectro (ESBL): ocorrência e preditores de mortalidade em um hospital universitário mineiro. Masters Dissertation, Universidade Federal De Uberlândia, Instituto De Ciências Biomédicas, Uberlândia 2011
  28. Minarini LA, Darini AL. Mutations in the quinolone resistance-determining regions of gyrA and parC in Enterobacteriaceae isolates from Brazil. Braz J Microbiol 2012;43:1309–1314 [CrossRef][PubMed]
    [Google Scholar]
  29. Norouzi A, Azizi O, Hosseini H, Skakibaie S, Shakibaie M. Amino acid substitution mutations analysis of gyrA and parC genes in clonal lineage of Klebsiella pneumoniae conferring high-level quinolone resistance. Res Infect Dis Trop Med 2014;2:109–117
    [Google Scholar]
  30. Asadpour L. Study of amino acid alteration in graA & parC genes in quinolone resistant Klebsiella pneumoniae. Crescent J Med Biol Sci 2017;4:3–6
    [Google Scholar]
  31. Martínez-Martínez L, Pascual A, García I, Tran J, Jacoby GA. Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother 2003;51:1037–1039 [CrossRef][PubMed]
    [Google Scholar]
  32. Jeong JY, Kim ES, Choi SH, Kwon HH, Lee SR et al. Effects of a plasmid-encoded qnrA1 determinant in Escherichia coli strains carrying chromosomal mutations in the acrAB efflux pump genes. Diagn Microbiol Infect Dis 2008;60:105–107 [CrossRef][PubMed]
    [Google Scholar]
  33. Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr 2014;2: doi:10.1128/microbiolspec.PLAS-0006-2013 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000551
Loading
/content/journal/jmm/10.1099/jmm.0.000551
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error