1887

Abstract

Purpose. Solid-organ transplant recipients may display high rates of colonization and/or infection by multidrug-resistant bacteria. We analysed and compared the phenotypic and genotypic diversity of carbapenem-resistant (CR) strains of Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii isolated from patients in the Solid Organ Transplantation department of our hospital.

Methodology. Between March 2012 and August 2013, 56 CR strains from various biological fluids underwent antimicrobial susceptibility testing with VITEK 2, molecular analysis by PCR amplification and genotypic analysis with pulsed-field gel electrophoresis (PFGE). They were clustered according to antimicrobial drug susceptibility and genotypic profiles. Diversity analyses were performed by calculating Simpson’s diversity index and applying computed rarefaction curves.

Results/Key findings. Among K. pneumoniae, KP-producers predominated (57.1 %). VIM and OXA-23 carbapenemases prevailed among P. aeruginosa and A. baumannii (89.4 and 88.9 %, respectively). KPC-producing K. pneumoniae and OXA-23 A. baumannii were assigned in single PFGE pulsotypes. VIM-producing P. aeruginosa generated multiple pulsotypes. CR K. pneumoniae strains displayed phenotypic diversity in tigecycline, colistin (CS), amikacin (AMK), gentamicin (GEN) and co-trimoxazole (SXT) (16 clusters); P. aeruginosa displayed phenotypic diversity in cefepime (FEP), ceftazidime, aztreonam, piperacillin, piperacillin–tazobactam, AMK, GEN and CS (9 clusters); and A. baumannii displayed phenotypic diversity in AMK, GEN, SXT, FEP, tobramycin and rifampicin (8 clusters). The Simpson diversity indices for the interpretative phenotype and PFGE analysis were 0.89 and 0.6, respectively, for K. pneumoniae strains (P<0.001); 0.77 and 0.6 for P. aeruginosa (P=0.22); and 0.86 and 0.19 for A. baumannii (P=0.004).

Conclusion. The presence of different antimicrobial susceptibility profiles does not preclude the possibility that two CR K. pneumoniae or A. baumannii isolates are clonally related.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000541
2017-07-31
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/8/1158.html?itemId=/content/journal/jmm/10.1099/jmm.0.000541&mimeType=html&fmt=ahah

References

  1. Viale P, Giannella M, Tedeschi S, Lewis R. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr Opin Pharmacol 2015;24:30–37 [CrossRef][PubMed]
    [Google Scholar]
  2. Tansarli GS, Karageorgopoulos DE, Kapaskelis A, Falagas ME. Impact of antimicrobial multidrug resistance on inpatient care cost: an evaluation of the evidence. Expert Rev Anti Infect Ther 2013;11:321–331 [CrossRef][PubMed]
    [Google Scholar]
  3. Freire MP, Pierrotti LC, Oshiro IC, Bonazzi PR, Oliveira LM et al. Carbapenem-resistant Acinetobacter baumannii acquired before liver transplantation: Impact on recipient outcomes. Liver Transpl 2016;22:615–626 [CrossRef][PubMed]
    [Google Scholar]
  4. Geladari A, Karampatakis T, Antachopoulos C, Iosifidis E, Tsiatsiou O et al. Epidemiological surveillance of multidrug-resistant Gram-negative bacteria in a solid organ transplantation department. Transpl Infect Dis 2017;19:e12686 [CrossRef]
    [Google Scholar]
  5. Vardakas KZ, Matthaiou DK, Falagas ME, Antypa E, Koteli A et al. Characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in the intensive care unit. J Infect 2015;70:592–599 [CrossRef][PubMed]
    [Google Scholar]
  6. Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 2014;15:1351–1370 [CrossRef][PubMed]
    [Google Scholar]
  7. Smith CA, Antunes NT, Toth M, Vakulenko SB. Crystal structure of carbapenemase OXA-58 from Acinetobacter baumannii. Antimicrob Agents Chemother 2014;58:2135–2143 [CrossRef][PubMed]
    [Google Scholar]
  8. Seiffert SN, Marschall J, Perreten V, Carattoli A, Furrer H et al. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int J Antimicrob Agents 2014;44:260–262 [CrossRef][PubMed]
    [Google Scholar]
  9. Richardot C, Plésiat P, Fournier D, Monlezun L, Broutin I et al. Carbapenem resistance in cystic fibrosis strains of Pseudomonas aeruginosa as a result of amino acid substitutions in porin OprD. Int J Antimicrob Agents 2015;45:529–532 [CrossRef][PubMed]
    [Google Scholar]
  10. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011;17:1791–1798 [CrossRef][PubMed]
    [Google Scholar]
  11. Tsiatsiou O, Iosifidis Ε, Katragkou A, Dimou V, Sarafidis K et al. Successful management of an outbreak due to carbapenem-resistant Acinetobacter baumannii in a neonatal intensive care unit. Eur J Pediatr 2015;174:65–74 [CrossRef][PubMed]
    [Google Scholar]
  12. Psichogiou M, Tassios PT, Avlamis A, Stefanou I, Kosmidis C et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J Antimicrob Chemother 2008;61:59–63 [CrossRef][PubMed]
    [Google Scholar]
  13. CLSI Performance Standards for Antimicrobial Susceptibility Testing Twenty-Fifth Informational Supplement M100-S25. CLSI, Wayne, PA, USA 2015
    [Google Scholar]
  14. EUCAST 2016; Breakpoint tables for interpretation of MICs and zone diameters, Version 6.0, 2016. www.eucast.org/clinical_breakpoints
  15. Marchaim D, Pogue JM, Tzuman O, Hayakawa K, Lephart PR et al. Major variation in MICs of tigecycline in Gram-negative bacilli as a function of testing method. J Clin Microbiol 2014;52:1617–1621 [CrossRef][PubMed]
    [Google Scholar]
  16. Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M et al. Evaluation of different laboratory tests for the detection of metallo-β-lactamase production in Enterobacteriaceae. J Antimicrob Chemother 2008;61:548–553 [CrossRef][PubMed]
    [Google Scholar]
  17. Tsakris A, Poulou A, Pournaras S, Voulgari E, Vrioni G et al. A simple phenotypic method for the differentiation of metallo-β-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. J Antimicrob Chemother 2010;65:1664–1671 [CrossRef][PubMed]
    [Google Scholar]
  18. Ikonomidis A, Tokatlidou D, Kristo I, Sofianou D, Tsakris A et al. Outbreaks in distinct regions due to a single Klebsiella pneumoniae clone carrying a blaVIM-1 metallo-β-lactamase gene. J Clin Microbiol 2005;43:5344–5347 [CrossRef][PubMed]
    [Google Scholar]
  19. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006;27:351–353 [CrossRef][PubMed]
    [Google Scholar]
  20. Pournaras S, Protonotariou E, Voulgari E, Kristo I, Dimitroulia E et al. Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother 2009;64:348–352 [CrossRef][PubMed]
    [Google Scholar]
  21. Voulgari E, Gartzonika C, Vrioni G, Politi L, Priavali E et al. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J Antimicrob Chemother 2014;69:2091–2097 [CrossRef][PubMed]
    [Google Scholar]
  22. Silbert S, Pfaller MA, Hollis RJ, Barth AL, Sader HS. Evaluation of three molecular typing techniques for nonfermentative Gram-negative bacilli. Infect Control Hosp Epidemiol 2004;25:847–851 [CrossRef][PubMed]
    [Google Scholar]
  23. Ranellou K, Kadlec K, Poulou A, Voulgari E, Vrioni G et al. Detection of Pseudomonas aeruginosa isolates of the international clonal complex 11 carrying the blaPER-1 extended-spectrum β-lactamase gene in Greece. J Antimicrob Chemother 2012;67:357–361 [CrossRef][PubMed]
    [Google Scholar]
  24. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 2007;13:1–46 [CrossRef][PubMed]
    [Google Scholar]
  25. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233–2239[PubMed]
    [Google Scholar]
  26. Gotelli NJ, Colwell RK. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 2001;4:379–391 [CrossRef]
    [Google Scholar]
  27. Hu YY, Gu DX, Cai JC, Zhou HW, Zhang R. Emergence of KPC-2-producing Pseudomonas aeruginosa sequence type 463 isolates in Hangzhou, China. Antimicrob Agents Chemother 2015;59:2914–2917 [CrossRef][PubMed]
    [Google Scholar]
  28. Giakoupi P, Maltezou H, Polemis M, Pappa O, Saroglou G et al. KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveill 2009;14:[PubMed]
    [Google Scholar]
  29. Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009-10). J Antimicrob Chemother 2011;66:1510–1513 [CrossRef][PubMed]
    [Google Scholar]
  30. Zagorianou A, Sianou E, Iosifidis E, Dimou V, Protonotariou E et al. Microbiological and molecular characteristics of carbapenemase-producing Klebsiella pneumoniae endemic in a tertiary Greek hospital during 2004-2010. Euro Surveill 2012;17:1–7
    [Google Scholar]
  31. Tokatlidou D, Tsivitanidou M, Pournaras S, Ikonomidis A, Tsakris A et al. Outbreak caused by a multidrug-resistant Klebsiella pneumoniae clone carrying blaVIM-12 in a university hospital. J Clin Microbiol 2008;46:1005–1008 [CrossRef][PubMed]
    [Google Scholar]
  32. Borer A, Saidel-Odes L, Eskira S, Nativ R, Riesenberg K et al. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K pneumoniae. Am J Infect Control 2012;40:421–425 [CrossRef][PubMed]
    [Google Scholar]
  33. Papagiannitsis CC, Giakkoupi P, Kotsakis SD, Tzelepi E, Tzouvelekis LS et al. OmpK35 and OmpK36 porin variants associated with specific sequence types of Klebsiella pneumoniae. J Chemother 2013;25:250–254 [CrossRef][PubMed]
    [Google Scholar]
  34. Voulgari E, Zarkotou O, Ranellou K, Karageorgopoulos DE, Vrioni G et al. Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J Antimicrob Chemother 2013;68:84–88 [CrossRef][PubMed]
    [Google Scholar]
  35. Tsakris A, Poulou A, Bogaerts P, Dimitroulia E, Pournaras S et al. Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol 2015;53:1245–1251 [CrossRef][PubMed]
    [Google Scholar]
  36. Carrër A, Poirel L, Yilmaz M, Akan OA, Feriha C et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother 2010;54:1369–1373 [CrossRef][PubMed]
    [Google Scholar]
  37. Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 2014;58:4443–4451 [CrossRef][PubMed]
    [Google Scholar]
  38. Bremmer DN, Clancy CJ, Press EG, Almaghrabi R, Chen L et al. KPC-producing Klebsiella pneumoniae strains that harbor AAC(6')-Ib exhibit intermediate resistance to amikacin. Antimicrob Agents Chemother 2014;58:7597–7600 [CrossRef][PubMed]
    [Google Scholar]
  39. Cannatelli A, Giani T, D'Andrea MM, Di Pilato V, Arena F et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother 2014;58:5696–5703 [CrossRef][PubMed]
    [Google Scholar]
  40. Kontopoulou K, Protonotariou E, Vasilakos K, Kriti M, Koteli A et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin. J Hosp Infect 2010;76:70–73 [CrossRef][PubMed]
    [Google Scholar]
  41. Papadimitriou-Olivgeris M, Christofidou M, Fligou F, Bartzavali C, Vrettos T et al. The role of colonization pressure in the dissemination of colistin or tigecycline resistant KPC-producing Klebsiella pneumoniae in critically ill patients. Infection 2014;42:883–890 [CrossRef][PubMed]
    [Google Scholar]
  42. Lübbert C, Faucheux S, Becker-Rux D, Laudi S, Dürrbeck A et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents 2013;42:565–570 [CrossRef][PubMed]
    [Google Scholar]
  43. Pournaras S, Maniati M, Petinaki E, Tzouvelekis LS, Tsakris A et al. Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-β-lactamase gene variants blaVIM-2 and blaVIM-4. J Antimicrob Chemother 2003;51:1409–1414 [CrossRef][PubMed]
    [Google Scholar]
  44. Siarkou VI, Vitti D, Protonotariou E, Ikonomidis A, Sofianou D. Molecular epidemiology of outbreak-related Pseudomonas aeruginosa strains carrying the novel variant blaVIM-17 metallo-β-lactamase gene. Antimicrob Agents Chemother 2009;53:1325–1330 [CrossRef][PubMed]
    [Google Scholar]
  45. Tsakris A, Poulou A, Kristo I, Pittaras T, Spanakis N et al. Large dissemination of VIM-2-metallo-β-lactamase-producing Pseudomonas aeruginosa strains causing health care-associated community-onset infections. J Clin Microbiol 2009;47:3524–3529 [CrossRef][PubMed]
    [Google Scholar]
  46. Fournier D, Richardot C, Müller E, Robert-Nicoud M, Llanes C et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J Antimicrob Chemother 2013;68:1772–1780 [CrossRef][PubMed]
    [Google Scholar]
  47. Pournaras S, Maniati M, Spanakis N, Ikonomidis A, Tassios PT et al. Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J Antimicrob Chemother 2005;56:761–764 [CrossRef][PubMed]
    [Google Scholar]
  48. Liakopoulos A, Mavroidi A, Katsifas EA, Theodosiou A, Karagouni AD et al. Carbapenemase-producing Pseudomonas aeruginosa from central Greece: molecular epidemiology and genetic analysis of class I integrons. BMC Infect Dis 2013;13:505 [CrossRef][PubMed]
    [Google Scholar]
  49. Franklin C, Liolios L, Peleg AY. Phenotypic detection of carbapenem-susceptible metallo-β-lactamase-producing Gram-negative bacilli in the clinical laboratory. J Clin Microbiol 2006;44:3139–3144 [CrossRef][PubMed]
    [Google Scholar]
  50. Qu TT, Zhang JL, Wang J, Tao J, Yu YS et al. Evaluation of phenotypic tests for detection of metallo-β-lactamase-producing Pseudomonas aeruginosa strains in China. J Clin Microbiol 2009;47:1136–1142 [CrossRef][PubMed]
    [Google Scholar]
  51. Poirel L, Lambert T, Türkoglü S, Ronco E, Gaillard J et al. Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the blaVIM-2 carbapenem-hydrolyzing β-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob Agents Chemother 2001;45:546–552 [CrossRef][PubMed]
    [Google Scholar]
  52. Samonis G, Maraki S, Vouloumanou EK, Georgantzi GG, Kofteridis DP et al. Antimicrobial susceptibility of non-fermenting Gram-negative isolates to isepamicin in a region with high antibiotic resistance. Eur J Clin Microbiol Infect Dis 2012;31:3191–3198 [CrossRef][PubMed]
    [Google Scholar]
  53. Liakopoulos A, Miriagou V, Katsifas EA, Karagouni AD, Daikos GL et al. Identification of OXA-23-producing Acinetobacter baumannii in Greece, 2010 to 2011. Euro Surveill 2012;17:20117[PubMed]
    [Google Scholar]
  54. Oikonomou O, Sarrou S, Papagiannitsis CC, Georgiadou S, Mantzarlis K et al. Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: mechanisms of resistance, molecular identification and epidemiological data. BMC Infect Dis 2015;15:559 [CrossRef][PubMed]
    [Google Scholar]
  55. Pournaras S, Markogiannakis A, Ikonomidis A, Kondyli L, Bethimouti K et al. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J Antimicrob Chemother 2006;57:557–561 [CrossRef][PubMed]
    [Google Scholar]
  56. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006;258:72–77 [CrossRef][PubMed]
    [Google Scholar]
  57. Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2013;41:11–19 [CrossRef][PubMed]
    [Google Scholar]
  58. Katragkou A, Kotsiou M, Antachopoulos C, Benos A, Sofianou D et al. Acquisition of imipenem-resistant Acinetobacter baumannii in a pediatric intensive care unit: a case-control study. Intensive Care Med 2006;32:1384–1391 [CrossRef][PubMed]
    [Google Scholar]
  59. Kraniotaki E, Manganelli R, Platsouka E, Grossato A, Paniara O et al. Molecular investigation of an outbreak of multidrug-resistant Acinetobacter baumannii, with characterisation of class 1 integrons. Int J Antimicrob Agents 2006;28:193–199 [CrossRef][PubMed]
    [Google Scholar]
  60. Souli M, Galani I, Giamarellou H. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill 2008;13:5437–5453
    [Google Scholar]
  61. Falagas ME, Vardakas KZ, Roussos NS. Trimethoprim/sulfamethoxazole for Acinetobacter spp.: a review of current microbiological and clinical evidence. Int J Antimicrob Agents 2015;46:231–241 [CrossRef][PubMed]
    [Google Scholar]
  62. Bai Y, Liu B, Wang T, Cai Y, Liang B et al. In vitro activities of combinations of rifampin with other antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2015;59:1466–1471 [CrossRef][PubMed]
    [Google Scholar]
  63. Yang S, Hemarajata P, Hindler J, Ward K, Adisetiyo H et al. Investigation of a suspected nosocomial transmission of blaKPC3-mediated carbapenem-resistant Klebsiella pneumoniae by whole genome sequencing. Diagn Microbiol Infect Dis 2016;84:337–342 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000541
Loading
/content/journal/jmm/10.1099/jmm.0.000541
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error