1887

Abstract

Purpose. Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing.

Methodology. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson’s correlation coefficient.

Results. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here.

Conclusion. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000536
2017-08-04
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/8/1151.html?itemId=/content/journal/jmm/10.1099/jmm.0.000536&mimeType=html&fmt=ahah

References

  1. Fitzgerald SD, Kaneene JB. Wildlife reservoirs of bovine tuberculosis worldwide: hosts, pathology, surveillance, and control. Vet Pathol 2013;50:488–499 [CrossRef][PubMed]
    [Google Scholar]
  2. Ei PW, Aung WW, Lee JS, Choi GE, Chang CL. Molecular strain typing of Mycobacterium tuberculosis: a review of frequently used methods. J Korean Med Sci 2016;31:1673–1683 [CrossRef][PubMed]
    [Google Scholar]
  3. Jagielski T, van Ingen J, Rastogi N, Dziadek J, Mazur PK et al. Current methods in the molecular typing of Mycobacterium tuberculosis and other mycobacteria. Biomed Res Int 2014;2014:645802 [CrossRef][PubMed]
    [Google Scholar]
  4. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 2006;19:658–685 [CrossRef][PubMed]
    [Google Scholar]
  5. Choi GE, Jang MH, Song EJ, Jeong SH, Kim JS et al. IS6110-restriction fragment length polymorphism and spoligotyping analysis of Mycobacterium tuberculosis clinical isolates for investigating epidemiologic distribution in Korea. J Korean Med Sci 2010;25:1716–1721 [CrossRef][PubMed]
    [Google Scholar]
  6. Park YK, Bai GH, Kim SJ. Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from countries in the western pacific region. J Clin Microbiol 2000;38:191–197[PubMed]
    [Google Scholar]
  7. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997;35:907–914[PubMed]
    [Google Scholar]
  8. Supply P, Magdalena J, Himpens S, Locht C. Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 1997;26:991–1003 [CrossRef][PubMed]
    [Google Scholar]
  9. Yun KW, Song EJ, Choi GE, Hwang IK, Lee EY et al. Strain typing of Mycobacterium tuberculosis isolates from Korea by mycobacterial interspersed repetitive units-variable number of tandem repeats. Korean J Lab Med 2009;29:314–319 [CrossRef][PubMed]
    [Google Scholar]
  10. Dos Vultos T, Blázquez J, Rauzier J, Matic I, Gicquel B. Identification of Nudix hydrolase family members with an antimutator role in Mycobacterium tuberculosis and Mycobacterium smegmatis. J Bacteriol 2006;188:3159–3161 [CrossRef][PubMed]
    [Google Scholar]
  11. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 1997;94:9869–9874 [CrossRef][PubMed]
    [Google Scholar]
  12. Cangelosi GA, Freeman RJ, Lewis KN, Livingston-Rosanoff D, Shah KS et al. Evaluation of a high-throughput repetitive-sequence-based PCR system for DNA fingerprinting of Mycobacterium tuberculosis and Mycobacterium avium complex strains. J Clin Microbiol 2004;42:2685–2693 [CrossRef][PubMed]
    [Google Scholar]
  13. Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah L et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med Overseas Ed 2011;364:730–739 [CrossRef]
    [Google Scholar]
  14. Schürch AC, van Soolingen D. DNA fingerprinting of Mycobacterium tuberculosis: from phage typing to whole-genome sequencing. Infect Genet Evol 2012;12:602–609 [CrossRef][PubMed]
    [Google Scholar]
  15. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 2013;13:137–146 [CrossRef][PubMed]
    [Google Scholar]
  16. Ramos DF, Tavares L, da Silva PE, Dellagostin OA. Molecular typing of Mycobacterium bovis isolates: a review. Braz J Microbiol 2014;45:365–372 [CrossRef][PubMed]
    [Google Scholar]
  17. Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D et al. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 2001;39:3563–3571 [CrossRef][PubMed]
    [Google Scholar]
  18. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 2006;44:4498–4510 [CrossRef][PubMed]
    [Google Scholar]
  19. Boniotti MB, Goria M, Loda D, Garrone A, Benedetto A et al. Molecular typing of Mycobacterium bovis strains isolated in Italy from 2000 to 2006 and evaluation of variable-number tandem repeats for geographically optimized genotyping. J Clin Microbiol 2009;47:636–644 [CrossRef][PubMed]
    [Google Scholar]
  20. Allix C, Walravens K, Saegerman C, Godfroid J, Supply P et al. Evaluation of the epidemiological relevance of variable-number tandem-repeat genotyping of Mycobacterium bovis and comparison of the method with IS6110 restriction fragment length polymorphism analysis and spoligotyping. J Clin Microbiol 2006;44:1951–1962 [CrossRef][PubMed]
    [Google Scholar]
  21. Versalovic J, Kapur V, Mason EO, Shah U, Koeuth T et al. Penicillin-resistant Streptococcus pneumoniae strains recovered in Houston: identification and molecular characterization of multiple clones. J Infect Dis 1993;167:850–856 [CrossRef][PubMed]
    [Google Scholar]
  22. Versalovic J, Kapur V, Koeuth T, Mazurek GH, Whittam TS et al. DNA fingerprinting of pathogenic bacteria by fluorophore-enhanced repetitive sequence-based polymerase chain reaction. Arch Pathol Lab Med 1995;119:23–29[PubMed]
    [Google Scholar]
  23. Jang MH, Choi GE, Shin BM, Lee SH, Kim SR et al. Comparison of an automated repetitive sequence-based PCR microbial typing system with IS6110-restriction fragment length polymorphism for epidemiologic investigation of clinical Mycobacterium tuberculosis isolates in Korea. Korean J Lab Med 2011;31:282–284 [CrossRef][PubMed]
    [Google Scholar]
  24. Christianson S, Wolfe J, Soualhine H, Sharma MK. Comparison of repetitive-sequence-based polymerase chain reaction with random amplified polymorphic DNA analysis for rapid genotyping of nontuberculosis mycobacteria. Can J Microbiol 2012;58:953–964 [CrossRef][PubMed]
    [Google Scholar]
  25. Di Marco V, Mazzone P, Capucchio MT, Boniotti MB, Aronica V et al. Epidemiological significance of the domestic black pig (Sus scrofa) in maintenance of bovine tuberculosis in Sicily. J Clin Microbiol 2012;50:1209–1218 [CrossRef][PubMed]
    [Google Scholar]
  26. Marianelli C, Armas F, Boniotti MB, Mazzone P, Pacciarini ML et al. Multiple drug-susceptibility screening in Mycobacterium bovis: new nucleotide polymorphisms in the embB gene among ethambutol susceptible strains. Int J Infect Dis 2015;33:39–44 [CrossRef][PubMed]
    [Google Scholar]
  27. Barnes PF, Cave MD. Molecular epidemiology of tuberculosis. N Engl J Med 2003;349:1149–1156 [CrossRef][PubMed]
    [Google Scholar]
  28. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 1988;26:2465–2466[PubMed]
    [Google Scholar]
  29. Brossier F, Sola C, Millot G, Jarlier V, Veziris N et al. Comparison of a semiautomated commercial repetitive-sequence-based PCR method with spoligotyping, 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing, and restriction fragment length polymorphism-based analysis of IS6110 for Mycobacterium tuberculosis typing. J Clin Microbiol 2014;52:4082–4086 [CrossRef][PubMed]
    [Google Scholar]
  30. Masala S, Molicotti P, Bua A, Zumbo A, Delogu G et al. Molecular characterization of Sardinian Mycobacterium tuberculosis isolates by IS6110 restriction fragment length polymorphism, MIRU-VNTR and rep-PCR. New Microbiol 2010;33:155–162[PubMed]
    [Google Scholar]
  31. Navarro Y, Herranz M, Romero B, Bouza E, Domínguez L et al. High-throughput multiplex MIRU-VNTR typing of Mycobacterium bovis. Res Vet Sci 2014;96:422–425 [CrossRef][PubMed]
    [Google Scholar]
  32. Duarte EL, Domingos M, Amado A, Cunha MV, Botelho A. MIRU-VNTR typing adds discriminatory value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by spoligotyping. Vet Microbiol 2010;143:299–306 [CrossRef][PubMed]
    [Google Scholar]
  33. Rodriguez-Campos S, Navarro Y, Romero B, de Juan L, Bezos J et al. Splitting of a prevalent Mycobacterium bovis spoligotype by variable-number tandem-repeat typing reveals high heterogeneity in an evolving clonal group. J Clin Microbiol 2013;51:3658–3665 [CrossRef][PubMed]
    [Google Scholar]
  34. Romero B, Aranaz A, Sandoval A, Alvarez J, de Juan L et al. Persistence and molecular evolution of Mycobacterium bovis population from cattle and wildlife in Doñana National Park revealed by genotype variation. Vet Microbiol 2008;132:87–95 [CrossRef][PubMed]
    [Google Scholar]
  35. Roring S, Scott AN, Glyn Hewinson R, Neill SD, Skuce RA. Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland. Vet Microbiol 2004;101:65–73 [CrossRef][PubMed]
    [Google Scholar]
  36. Yang L, Wang C, Wang H, Meng Q, Wang Q. Evaluation of MIRU-VNTR for typing of Mycobacterium bovis isolated from Sika deer in Northeast China. BMC Vet Res 2015;11:93 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000536
Loading
/content/journal/jmm/10.1099/jmm.0.000536
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error