Evaluation of biofilm-specific antimicrobial resistance genes in isolates in Farabi Hospital Free

Abstract

Biofilm produced from is the cause of infection induced by contact lenses, trauma and post-surgery infection. The aim of this study was to evaluate biofilm formation and the presence of the genes and in ocular infection isolates of .

A total of 92 strains were collected from patients with ocular infection referred to Farabi Hospital between March 2014 and July 2015. Antibiotic susceptibility patterns were evaluated by the agar disc-diffusion method according to CLSI guidelines. PCR assays were used to detect and genes associated with resistance in biofilm-producing isolates. Biofilm formation ability was examined by crystal violet microtitre plate assay.

During the period of study, 92 were isolated from ocular infections including keratitis (=84) and endophthalmitis (=8). The highest resistance rates were seen against colistin (57.6 %) and gentamicin (50 %) and the lowest resistance rates were seen against imipenem (3.3 %), aztreonam (4.3 %), piperacillin-tazobactam (4.3 %), ceftazidime (4.3 %) and ciprofloxacin (5.4 %). Biofilm production ability was found in 100 % of the isolates. PCR assays showed that of the 92 isolates, 96.7 and 90.2 % harboured the genes and , respectively.

Our results showed a considerable ability of biofilm production, as well as the occurrence of biofilm-specific antimicrobial resistance genes ( and ), in isolates from ocular infections in Farabi Hospital.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000521
2017-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/7/905.html?itemId=/content/journal/jmm/10.1099/jmm.0.000521&mimeType=html&fmt=ahah

References

  1. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426:306–310 [View Article][PubMed]
    [Google Scholar]
  2. Wozniak DJ, Wyckoff TJO, Starkey M, Keyser R, Azadi P et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 2003; 100:7907–7912 [View Article]
    [Google Scholar]
  3. Heydari S, Eftekhar F. Biofilm formation and β-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol 2015; 8:e15514 [View Article][PubMed]
    [Google Scholar]
  4. Mehrnejad F, Karimi F, Asadi Amoli F, Abedinyfar Z, Doustdar F et al. Genetic fingerprinting and antimicrobial susceptibility profiles of Pseudomonas aeruginosa isolates from eye infections. Arch Clin Infect Dis 2011; 6:41–46
    [Google Scholar]
  5. Fleiszig SM, Evans DJ. The pathogenesis of contact lens-associated microbial keratitis. Optom Vis Sci 2010; 87:225–232 [View Article][PubMed]
    [Google Scholar]
  6. Hassan A, Usman J, Kaleem F, Omair M, Khalid A et al. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 2011; 15:305–311 [View Article][PubMed]
    [Google Scholar]
  7. Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C et al. Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One 2013; 8:e61625 [View Article][PubMed]
    [Google Scholar]
  8. Sadovskaya I, Vinogradov E, Li J, Hachani A, Kowalska K et al. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated β-(1→3)-glucans, which bind aminoglycosides. Glycobiology 2010; 20:895–904 [View Article][PubMed]
    [Google Scholar]
  9. Stapleton F, Keay L, Jalbert I, Cole N. The epidemiology of contact lens related infiltrates. Optom Vis Sci 2007; 84:257–272 [View Article][PubMed]
    [Google Scholar]
  10. Peix A, Valverde A, Rivas R, Igual JM, Ramírez-Bahena MH et al. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 2007; 57:1286–1290 [View Article][PubMed]
    [Google Scholar]
  11. Al-Zahrani SH, Aly NA, Al-Harbi MA. Genetic characterization of Pseudomonas aeruginosa isolated from contact lenses and other sources by RAPD analysis. Life Sci J 2012; 9:835–843
    [Google Scholar]
  12. Galentine PG, Cohen EJ, Laibson PR, Adams CP, Michaud R et al. Corneal ulcers associated with contact lens wear. Arch Ophthalmol 1984; 102:891–894 [View Article][PubMed]
    [Google Scholar]
  13. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318–1322 [View Article][PubMed]
    [Google Scholar]
  14. Mclaughlin-Borlace L, Stapleton F, Matheson M, Dart JK. Bacterial biofilm on contact lenses and lens storage cases in wearers with microbial keratitis. J Appl Microbiol 1998; 84:827–838 [View Article][PubMed]
    [Google Scholar]
  15. del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 2007; 82:204–209 [View Article][PubMed]
    [Google Scholar]
  16. Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005; 11:17–32 [View Article][PubMed]
    [Google Scholar]
  17. Ansari A, Salman S, Yaqoob S. Antibiotic resistance pattern in Pseudomonas aeruginosa strains isolated at era s Lucknow medical college and hospital, Lucknow, India. Int J Curr Microbiol App Sci 201548–58
    [Google Scholar]
  18. Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol 2006; 55:1619–1629 [View Article][PubMed]
    [Google Scholar]
  19. Neamati F, Firoozeh F, Saffari M, Zibaei M. Virulence genes and antimicrobial resistance pattern in uropathogenicEscherichia coli isolated from hospitalized patients in Kashan, Iran. Jundishapur J Microbiol 2015; 8:e17514 [View Article][PubMed]
    [Google Scholar]
  20. O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp 2011; 47:e2437 [View Article][PubMed]
    [Google Scholar]
  21. Hazlett LD. Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res 2004; 23:1–30 [View Article][PubMed]
    [Google Scholar]
  22. Bettis DI, Hsu M, Moshirfar M. Corneal collagen cross-linking for nonectatic disorders: a systematic review. J Refract Surg 2012; 28:798–807 [View Article][PubMed]
    [Google Scholar]
  23. Mohammadpour M, Mohajernezhadfard Z, Khodabande A, Vahedi P. Antibiotic susceptibility patterns of Pseudomonas corneal ulcers in contact lens wearers. Middle East Afr J Ophthalmol 2011; 18:228 [View Article][PubMed]
    [Google Scholar]
  24. Rashid A, Chowdhury A, Rahman SHZ, Begum SA, Muazzam N. Infections by Pseudomonas aeruginosa and antibiotic resistance pattern of the isolates from Dhaka medical college hospital. Bangladesh J Med Microbiol 2007; 1:48–51 [View Article]
    [Google Scholar]
  25. Mohanasoundaram K. The antimicrobial resistance pattern in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital; 2008–2010 (a 3 year study). Clinic Diagnost Res J 2011; 5:491–494
    [Google Scholar]
  26. Pinna A, Usai D, Sechi LA, Molicotti P, Zanetti S et al. Detection of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens-associated corneal ulcers. Cornea 2008; 27:320–326 [View Article][PubMed]
    [Google Scholar]
  27. Rhee MK, Kowalski RP, Romanowski EG, Mah FS, Ritterband DC et al. A laboratory evaluation of antibiotic therapy for ciprofloxacin-resistant Pseudomonas aeruginosa. Am J Ophthalmol 2004; 138:226–230 [View Article][PubMed]
    [Google Scholar]
  28. Kunimoto DY, Sharma S, Garg P, Rao GN. In vitro susceptibility of bacterial keratitis pathogens to ciprofloxacin. Emerging resistance. Ophthalmology 1999; 106:80–85 [View Article][PubMed]
    [Google Scholar]
  29. Garg P, Sharma S, Rao GN. Ciprofloxacin-resistant Pseudomonas keratitis. Ophthalmology 1999; 106:1319–1323 [View Article][PubMed]
    [Google Scholar]
  30. Lomholt JA, Kilian M. Ciprofloxacin susceptibility of Pseudomonas aeruginosa isolates from keratitis. Br J Ophthalmol 2003; 87:1238–1240 [View Article][PubMed]
    [Google Scholar]
  31. Ly CN, Pham JN, Badenoch PR, Bell SM, Hawkins G et al. Bacteria commonly isolated from keratitis specimens retain antibiotic susceptibility to fluoroquinolones and gentamicin plus cephalothin. Clin Exp Ophthalmol 2006; 34:44–50 [View Article][PubMed]
    [Google Scholar]
  32. Willcox MD. Management and treatment of contact lens-related Pseudomonas keratitis. Clin Ophthalmol 2012; 6:919 [View Article][PubMed]
    [Google Scholar]
  33. Abidi SH, Sherwani SK, Siddiqui TR, Bashir A, Kazmi SU. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol 2013; 13:1 [View Article][PubMed]
    [Google Scholar]
  34. Beaudoin T, Zhang L, Hinz AJ, Parr CJ, Mah TF. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol 2012; 194:3128–3136 [View Article][PubMed]
    [Google Scholar]
  35. Zhang L, Hinz AJ, Nadeau JP, Mah TF. Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol 2011; 193:5510–5513 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000521
Loading
/content/journal/jmm/10.1099/jmm.0.000521
Loading

Data & Media loading...

Most cited Most Cited RSS feed