Prevalence study of plasmid-mediated AmpC β-lactamases in lacking inducible C from Saudi hospitals Free

Abstract

encoding plasmid-mediated AmpC (pAmpC) β-lactamases confer resistance to the third generation cephalosporins. pAmpC association with extended spectrum β-lactamases (ESBLs), plasmid-mediated quinolone resistance (PMQR) and aminoglycoside modifying enzymes (AMEs) is well documented. There are limited data regarding the epidemiology and clinical significance of pAmpC in Saudi Arabia. This study aimed to determine the prevalence of pAmpC and its coexistence with ESBLs, PMQR and AMEs in , and isolates in Saudi hospitals from January to December 2015.

The VITEK 2 system was used for organism identification and susceptibility testing. PCR and sequencing were used to detect pAmpC, ESBL, AME and PMQR genes.

Out of 3625 isolates of , and , 200 cefoxitin-resistant isolates were identified, making the prevalence of cefoxitin resistance 5.5 % (200/3625). CMY-2 and DHA were detected in 24 and 12 isolates, respectively. The prevalence of pAmpC was 1 % (36/3625). In several isolates, pAmpC β-lactamases were associated with PMQR genes including () and and/or with AMEs including , , , , and genes. No ESBLs were detected in pAmpC β-lactamase-harbouring isolates.

To our knowledge, this is the first study determining the prevalence of pAmpC β-lactamases and their association with PMQR and/or AME genes in Saudi Arabia and the Gulf States. CMY-2 is the most prevalent pAmpC β-lactamase in this study. These data emphasize the importance of surveillance studies and implementation of antimicrobial stewardship programmes to reduce infections caused by such resistant organisms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000504
2017-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/9/1286.html?itemId=/content/journal/jmm/10.1099/jmm.0.000504&mimeType=html&fmt=ahah

References

  1. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009; 22:161–182 [View Article][PubMed]
    [Google Scholar]
  2. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002; 40:2153–2162 [View Article][PubMed]
    [Google Scholar]
  3. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 2002; 46:1–11 [View Article][PubMed]
    [Google Scholar]
  4. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54:969–976 [View Article][PubMed]
    [Google Scholar]
  5. Drinkovic D, Morris AJ, Dyet K, Bakker S, Heffernan H. Plasmid-mediated AmpC beta-lactamase-producing Escherichia coli causing urinary tract infection in the Auckland community likely to be resistant to commonly prescribed antimicrobials. N Z Med J 2015; 128:50–59[PubMed]
    [Google Scholar]
  6. Gazouli M, Tzouvelekis LS, Vatopoulos AC, Tzelepi E. Transferable class C beta-lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC beta-lactamase. J Antimicrob Chemother 1998; 42:419–425 [View Article][PubMed]
    [Google Scholar]
  7. Mata C, Miró E, Rivera A, Mirelis B, Coll P et al. Prevalence of acquired AmpC beta-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes at a Spanish hospital from 1999 to 2007. Clin Microbiol Infect 2010; 16:472–476 [View Article][PubMed]
    [Google Scholar]
  8. Jamal W, Rotimi VO, Albert MJ, Khodakhast F, Udo EE et al. Emergence of nosocomial New Delhi metallo-β-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae in patients admitted to a tertiary care hospital in Kuwait. Int J Antimicrob Agents 2012; 39:183–184 [View Article][PubMed]
    [Google Scholar]
  9. Gaillot O, Clément C, Simonet M, Philippon A. Novel transferable beta-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J Antimicrob Chemother 1997; 39:85–87 [View Article][PubMed]
    [Google Scholar]
  10. Sonnevend Á, Ghazawi A, Yahfoufi N, Al-Baloushi A, Hashmey R et al. VIM-4 carbapenemase-producing Enterobacter cloacae in the United Arab Emirates. Clin Microbiol Infect 2012; 18:E494E496 [View Article][PubMed]
    [Google Scholar]
  11. Al-Agamy MH, El Mahdy TS, Shibl AM. Fecal colonization with extended-spectrum beta-lactamase and AmpC-producing Escherichia coli. Biomed Res Int 2016; 2016:1–7 [View Article][PubMed]
    [Google Scholar]
  12. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 2006; 57:154–155 [View Article][PubMed]
    [Google Scholar]
  13. Li B, Yi Y, Wang Q, Woo PC, Tan L et al. Analysis of drug resistance determinants in Klebsiella pneumoniae isolates from a tertiary-care hospital in Beijing, China. PLoS One 2012; 7:e42280 [View Article][PubMed]
    [Google Scholar]
  14. Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S et al. Genotypic identification of AmpC β-lactamases production in Gram-negative bacilli isolates. Jundishapur J Microbiol 2014; 7:e8556 [View Article][PubMed]
    [Google Scholar]
  15. Gharout-Sait A, Touati A, Guillard T, Brasme L, de Champs C. Molecular characterization and epidemiology of cefoxitin resistance among Enterobacteriaceae lacking inducible chromosomal ampC genes from hospitalized and non-hospitalized patients in Algeria: description of new sequence type in Klebsiella pneumoniae isolates. Braz J Infect Dis 2015; 19:187–195 [View Article][PubMed]
    [Google Scholar]
  16. Pai H, Kang CI, Byeon JH, Lee KD, Park WB et al. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-beta-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48:3720–3728 [View Article][PubMed]
    [Google Scholar]
  17. Ding H, Yang Y, Lu Q, Wang Y, Chen Y et al. The prevalence of plasmid-mediated AmpC beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children's hospitals in China. Eur J Clin Microbiol Infect Dis 2008; 27:915–921 [View Article][PubMed]
    [Google Scholar]
  18. Mohamudha Parveen R, Harish BN, Parija SC. AmpC beta-lactamases among Gram-negative clinical isolates from a tertiary hospital, South India. Braz J Microbiol 2010; 41:596–602 [View Article][PubMed]
    [Google Scholar]
  19. Tagg KA, Ginn AN, Jiang X, Ellem J, Partridge SR et al. Distribution of acquired AmpC β-lactamase genes in Sydney, Australia. Diagn Microbiol Infect Dis 2015; 83:56–58 [View Article][PubMed]
    [Google Scholar]
  20. Mulvey MR, Bryce E, Boyd DA, Ofner-Agostini M, Land AM et al. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob Agents Chemother 2005; 49:358–365 [View Article][PubMed]
    [Google Scholar]
  21. Mohamudha PR, Harish BN, Parija SC. Molecular description of plasmid-mediated AmpC β-lactamases among nosocomial isolates of Escherichia coli & Klebsiella pneumoniae from six different hospitals in India. Indian J Med Res 2012; 135:114–119[PubMed] [CrossRef]
    [Google Scholar]
  22. Jørgensen RL, Nielsen JB, Friis-Møller A, Fjeldsøe-Nielsen H, Schønning K. Prevalence and molecular characterization of clinical isolates of Escherichia coli expressing an AmpC phenotype. J Antimicrob Chemother 2010; 65:460–464 [View Article][PubMed]
    [Google Scholar]
  23. Reuland EA, Hays JP, de Jongh DM, Abdelrehim E, Willemsen I et al. Detection and occurrence of plasmid-mediated AmpC in highly resistant Gram-negative rods. PLoS One 2014; 9:e91396 [View Article][PubMed]
    [Google Scholar]
  24. Hassan H, Abdalhamid B. Molecular characterization of extended-spectrum beta-lactamase producing Enterobacteriaceae in a Saudi Arabian tertiary hospital. J Infect Dev Ctries 2014; 8:282–288 [View Article][PubMed]
    [Google Scholar]
  25. Al-Agamy MH, Shibl AM, Tawfik AF. Prevalence and molecular characterization of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in Riyadh, Saudi Arabia. Ann Saudi Med 2009; 29:253–257 [View Article][PubMed]
    [Google Scholar]
  26. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract 2008; 17:32–36 [View Article][PubMed]
    [Google Scholar]
  27. Bilal NE, Gedebou M. Clinical and community strains of Klebsiella pneumoniae: multiple and increasing rates of antibiotic resistance in Abha, Saudi Arabia. Br J Biomed Sci 2000; 57:185–191[PubMed]
    [Google Scholar]
  28. Mokaddas EM, Abdulla AA, Shati S, Rotimi VO. The technical aspects and clinical significance of detecting extended-spectrum beta-lactamase-producing Enterobacteriaceae at a tertiary-care hospital in Kuwait. J Chemother 2008; 20:445–451 [View Article][PubMed]
    [Google Scholar]
  29. Shibl AM, Al-Agamy MH, Khubnani H, Senok AC, Tawfik AF et al. High prevalence of acquired quinolone-resistance genes among Enterobacteriaceae from Saudi Arabia with CTX-M-15 β-lactamase. Diagn Microbiol Infect Dis 2012; 73:350–353 [View Article][PubMed]
    [Google Scholar]
  30. Liebana E, Gibbs M, Clouting C, Barker L, Clifton-Hadley FA et al. Characterization of beta-lactamases responsible for resistance to extended-spectrum cephalosporins in Escherichia coli and Salmonella enterica strains from food-producing animals in the United Kingdom. Microb Drug Resist 2004; 10:1–9 [View Article][PubMed]
    [Google Scholar]
  31. Sidjabat HE, Townsend KM, Hanson ND, Bell JM, Stokes HW et al. Identification of blaCMY-7 and associated plasmid-mediated resistance genes in multidrug-resistant Escherichia coli isolated from dogs at a veterinary teaching hospital in Australia. J Antimicrob Chemother 2006; 57:840–848 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000504
Loading
/content/journal/jmm/10.1099/jmm.0.000504
Loading

Data & Media loading...

Most cited Most Cited RSS feed