1887

Abstract

Purpose. We investigated the transcription of adhesin-encoding genes sabA, hopZ and labA in Helicobacter pylori strain J99. Each possesses a repeating homopolymeric nucleotide tract within their promoter regions, and sabA and hopZ possess repeats within their 5′ coding regions.

Methodology. We altered the repeat lengths associated with the adhesin genes and quantified mRNA levels by real-time quantitative PCR. Using adherence to AGS cells and IL-8 assays, we examined the effects of altered transcript levels. We assessed the role of ArsRS in transcription using an arsS null mutant and by examining ArsR binding to promoter regions via electrophoretic mobility shift assays.

Results. Extensions or truncations of promoter region repeats in hopZ and labA increased transcript levels, mirroring results shown by our lab and others for mutations in the sabA promoter. Altered lengths of the poly-cytosine thymine tract within the 5′ coding region of sabA demonstrated that switching from phase-off to phase-on significantly increased mRNA levels. However, mutations in the poly-thymine tract of sabA, which increased mRNA levels, do not behave synergistically with phase-on mutations. Phase-on mutations of sabA resulted in increased H. pylori adherence to AGS cells, but only a modest effect on IL-8. hopZ and labA, and sabA paralogue sabB, transcript levels were increased in an arsS mutant and ArsR bound the promoter regions for each of these genes in vitro.

Conclusion. This work highlights the complex nature of adhesin regulation, its impact on H. pylori attachment and the pervasive role of ArsRS in adhesin expression. Such regulation may help facilitate the decades-long persistence of infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000491
2017-06-09
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/6/798.html?itemId=/content/journal/jmm/10.1099/jmm.0.000491&mimeType=html&fmt=ahah

References

  1. Noto JM, Peek RM. Helicobacter pylori: an overview. Methods Mol Biol 2012;921:7–10 [CrossRef][PubMed]
    [Google Scholar]
  2. Amieva M, Peek RM. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 2016;150:64–78 [CrossRef][PubMed]
    [Google Scholar]
  3. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 1998;279:373–377 [CrossRef][PubMed]
    [Google Scholar]
  4. Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 2002;297:573–578 [CrossRef][PubMed]
    [Google Scholar]
  5. Aspholm M, Olfat FO, Nordén J, Sondén B, Lundberg C et al. SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog 2006;2:e110 [CrossRef][PubMed]
    [Google Scholar]
  6. Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci USA 2004;101:2106–2111 [CrossRef][PubMed]
    [Google Scholar]
  7. Lehours P, Ménard A, Dupouy S, Bergey B, Richy F et al. Evaluation of the association of nine Helicobacter pylori virulence factors with strains involved in low-grade gastric mucosa-associated lymphoid tissue lymphoma. Infect Immun 2004;72:880–888 [CrossRef][PubMed]
    [Google Scholar]
  8. Goodwin AC, Weinberger DM, Ford CB, Nelson JC, Snider JD et al. Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system. Microbiology 2008;154:2231–2240 [CrossRef][PubMed]
    [Google Scholar]
  9. Talarico S, Whitefield SE, Fero J, Haas R, Salama NR. Regulation of Helicobacter pylori adherence by gene conversion. Mol Microbiol 2012;84:1050–1061 [CrossRef][PubMed]
    [Google Scholar]
  10. Forsyth MH, Cao P, Garcia PP, Hall JD, Cover TL. Genome-wide transcriptional profiling in a histidine kinase mutant of Helicobacter pylori identifies members of a regulon. J Bacteriol 2002;184:4630–4635 [CrossRef][PubMed]
    [Google Scholar]
  11. Harvey VC, Acio CR, Bredehoft AK, Zhu L, Hallinger DR et al. Repetitive sequence variations in the promoter region of the adhesin-encoding gene sabA of Helicobacter pylori affect transcription. J Bacteriol 2014;196:3421–3429 [CrossRef][PubMed]
    [Google Scholar]
  12. Kennemann L, Brenneke B, Andres S, Engstrand L, Meyer TF et al. In vivo sequence variation in HopZ, a phase-variable outer membrane protein of Helicobacter pylori. Infect Immun 2012;80:4364–4373 [CrossRef][PubMed]
    [Google Scholar]
  13. Rossez Y, Gosset P, Boneca IG, Magalhães A, Ecobichon C et al. The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J Infect Dis 2014;210:1286–1295 [CrossRef][PubMed]
    [Google Scholar]
  14. Javaheri A, Kruse T, Moonens K, Mejías-Luque R, Debraekeleer A et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat Microbiol 2016;2:16189 [CrossRef][PubMed]
    [Google Scholar]
  15. Königer V, Holsten L, Harrison U, Busch B, Loell E et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol 2016;2:16188 [CrossRef][PubMed]
    [Google Scholar]
  16. Alm RA, Ling LS, Moir DT, King BL, Brown ED et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 1999;397:176–180 [CrossRef][PubMed]
    [Google Scholar]
  17. Kao CY, Sheu SM, Sheu BS, Wu JJ. Length of thymidine homopolymeric repeats modulates promoter activity of sabA in Helicobacter pylori. Helicobacter 2012;17:203–209 [CrossRef][PubMed]
    [Google Scholar]
  18. Åberg A, Gideonsson P, Vallström A, Olofsson A, Öhman C et al. A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014;10:e1004234 [CrossRef][PubMed]
    [Google Scholar]
  19. Backert S, Tegtmeyer N, Fischer W. Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol 2015;10:955–965 [CrossRef][PubMed]
    [Google Scholar]
  20. Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 2008;10:1573–1581 [CrossRef][PubMed]
    [Google Scholar]
  21. Pflock M, Dietz P, Schär J, Beier D. Genetic evidence for histidine kinase HP165 being an acid sensor of Helicobacter pylori. FEMS Microbiol Lett 2004;234:51–61 [CrossRef][PubMed]
    [Google Scholar]
  22. Pflock M, Finsterer N, Joseph B, Mollenkopf H, Meyer TF et al. Characterization of the ArsRS regulon of Helicobacter pylori, involved in acid adaptation. J Bacteriol 2006;188:3449–3462 [CrossRef][PubMed]
    [Google Scholar]
  23. Panthel K, Dietz P, Haas R, Beier D. Two-component systems of Helicobacter pylori contribute to virulence in a mouse infection model. Infect Immun 2003;71:5381–5385 [CrossRef][PubMed]
    [Google Scholar]
  24. Wang Y, Taylor DE. Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 1990;94:23–28 [CrossRef][PubMed]
    [Google Scholar]
  25. Loh JT, Gupta SS, Friedman DB, Krezel AM, Cover TL. Analysis of protein expression regulated by the Helicobacter pylori ArsRS two-component signal transduction system. J Bacteriol 2010;192:2034–2043 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee KE, Khoi PN, Xia Y, Park JS, Joo YE et al. Helicobacter pylori and interleukin-8 in gastric cancer. World J Gastroenterol 2013;19:8192–8202 [CrossRef][PubMed]
    [Google Scholar]
  27. Testerman TL, Morris J. Beyond the stomach: an updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol 2014;20:12781–12808 [CrossRef][PubMed]
    [Google Scholar]
  28. Smith SM. Role of Toll-like receptors in Helicobacter pylori infection and immunity. World J Gastrointest Pathophysiol 2014;5:133–146 [CrossRef][PubMed]
    [Google Scholar]
  29. Moore ME, Borén T, Solnick JV. Life at the margins: modulation of attachment proteins in Helicobacter pylori. Gut Microbes 2011;2:42–46 [CrossRef][PubMed]
    [Google Scholar]
  30. Hallinger DR, Romero-Gallo J, Peek RM, Forsyth MH. Polymorphisms of the acid sensing histidine kinase gene arsS in Helicobacter pylori populations from anatomically distinct gastric sites. Microb Pathog 2012;53:227–233 [CrossRef][PubMed]
    [Google Scholar]
  31. Liu H, Fero JB, Mendez M, Carpenter BM, Servetas SL et al. Analysis of a single Helicobacter pylori strain over a 10-year period in a primate model. Int J Med Microbiol 2015;305:392–403 [CrossRef][PubMed]
    [Google Scholar]
  32. Pernitzsch SR, Tirier SM, Beier D, Sharma CM. A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc Natl Acad Sci USA 2014;111:E501E510 [CrossRef][PubMed]
    [Google Scholar]
  33. Poore CA, Mobley HL. Differential regulation of the Proteus mirabilis urease gene cluster by UreR and H-NS. Microbiology 2003;149:3383–3394 [CrossRef][PubMed]
    [Google Scholar]
  34. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997;388:539–547 [CrossRef][PubMed]
    [Google Scholar]
  35. Colbeck JC, Hansen LM, Fong JM, Solnick JV. Genotypic profile of the outer membrane proteins BabA and BabB in clinical isolates of Helicobacter pylori. Infect Immun 2006;74:4375–4378 [CrossRef][PubMed]
    [Google Scholar]
  36. Adhya S, Gottesman M, De Crombrugghe B. Termination and antitermination in transcription: control of gene expression. Basic Life Sci 1974;3:213–221[PubMed]
    [Google Scholar]
  37. Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3'-end chronicles. J Mol Biol 2011;412:793–813 [CrossRef][PubMed]
    [Google Scholar]
  38. Boudvillain M, Figueroa-Bossi N, Bossi L. Terminator still moving forward: expanding roles for Rho factor. Curr Opin Microbiol 2013;16:118–124 [CrossRef][PubMed]
    [Google Scholar]
  39. Uptain SM, Chamberlin MJ. Escherichia coli RNA polymerase terminates transcription efficiently at rho-independent terminators on single-stranded DNA templates. Proc Natl Acad Sci USA 1997;94:13548–13553 [CrossRef][PubMed]
    [Google Scholar]
  40. Washio T, Sasayama J, Tomita M. Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res 1998;26:5456–5463 [CrossRef][PubMed]
    [Google Scholar]
  41. Servetas SL, Carpenter BM, Haley KP, Gilbreath JJ, Gaddy JA et al. Characterization of key Helicobacter pylori regulators identifies a role for ArsRS in biofilm formation. J Bacteriol 2016;198:2536–2548 [CrossRef][PubMed]
    [Google Scholar]
  42. Skoog EC, Padra M, Åberg A, Gideonsson P, Obi I et al. BabA dependent binding of Helicobacter pylori to human gastric mucins cause aggregation that inhibits proliferation and is regulated via ArsS. Sci Rep 2017;7:40656 [CrossRef][PubMed]
    [Google Scholar]
  43. Yamaoka Y. Increasing evidence of the role of Helicobacter pylori SabA in the pathogenesis of gastroduodenal disease. J Infect Dev Ctries 2008;2:174–181 [CrossRef][PubMed]
    [Google Scholar]
  44. Ishijima N, Suzuki M, Ashida H, Ichikawa Y, Kanegae Y et al. BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem 2011;286:25256–25264 [CrossRef][PubMed]
    [Google Scholar]
  45. Oleastro M, Cordeiro R, Ferrand J, Nunes B, Lehours P et al. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J Infect Dis 2008;198:1379–1387 [CrossRef][PubMed]
    [Google Scholar]
  46. Unemo M, Aspholm-Hurtig M, Ilver D, Bergström J, Borén T et al. The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J Biol Chem 2005;280:15390–15397 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000491
Loading
/content/journal/jmm/10.1099/jmm.0.000491
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error