1887

Abstract

We aimed to establish the prevalence of different species among UK cystic fibrosis (CF) and non-CF patients over a 2 year period.

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry was used to identify isolates to genus level, followed by sequence clustering or species-specific PCR. In all, 1047 isolates were submitted for identification from 361 CF patients and 112 non-CF patients, 25 from the hospital environment and three from a commercial company. Potential cross-infection was assessed by pulsed-field gel electrophoresis (PFGE) and multi- locus-sequence typing (MLST). MICs were determined for 161 complex (Bcc) isolates. CF Trust registry data were sought to examine clinical parameters relating to Bcc infection.

was the most prevalent species among CF patients affecting 56 % (192) patients, followed by IIIA (15 %; 52 patients). Five novel clusters were found. Among non-CF patients, was the most prevalent species (37/112; 34 %), with 18 of 40 isolates part of a UK-wide ‘cluster’. This and three other clusters were investigated by PFGE and MLST. Cable-pili positive isolates included two novel sequence types and representatives of ET12. Antibiotic susceptibility varied between and within species and CF/non- CF isolates. CF Trust registry data suggested no significant difference in lung function between patients harbouring and other Bcc species (=0.81).

The dominance of in CF, the presence of a cluster among non-CF patients and the existence of putative novel species all highlighted the continuing role of species as opportunistic pathogens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000458
2017-04-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/4/490.html?itemId=/content/journal/jmm/10.1099/jmm.0.000458&mimeType=html&fmt=ahah

References

  1. Mahenthiralingam E, Coenye T, Chung JW, Speert DP, Govan JR et al. Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 2000;38:910–913[PubMed]
    [Google Scholar]
  2. Vermis K, Coenye T, Lipuma JJ, Mahenthiralingam E, Nelis HJ et al. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int J Syst Evol Microbiol 2004;54:689–691 [CrossRef][PubMed]
    [Google Scholar]
  3. Vanlaere E, Lipuma JJ, Baldwin A, Henry D, de Brandt E et al. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 2008;58:1580–1590 [CrossRef][PubMed]
    [Google Scholar]
  4. Vanlaere E, Baldwin A, Gevers D, Henry D, de Brandt E et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 2009;59:102–111 [CrossRef][PubMed]
    [Google Scholar]
  5. Peeters C, Zlosnik JE, Spilker T, Hird TJ, Lipuma JJ et al. Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 2013;36:483–489 [CrossRef][PubMed]
    [Google Scholar]
  6. de Smet B, Mayo M, Peeters C, Zlosnik JE, Spilker T et al. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int J Syst Evol Microbiol 2015;65:2265–2271 [CrossRef][PubMed]
    [Google Scholar]
  7. Vial L, Chapalain A, Groleau MC, Déziel E. The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 2011;13:1–12 [CrossRef][PubMed]
    [Google Scholar]
  8. Vandamme P, Peeters C. Time to revisit polyphasic taxonomy. Antonie van Leeuwenhoek 2014;106:57–65 [CrossRef][PubMed]
    [Google Scholar]
  9. Parke JL, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 2001;39:225–258 [CrossRef][PubMed]
    [Google Scholar]
  10. Ganesan S, Sajjan US. Host evasion by Burkholderia cenocepacia. Front Cell Infect Microbiol 2012;1:25 [CrossRef][PubMed]
    [Google Scholar]
  11. Ko S, An HS, Bang JH, Park SW. An outbreak of Burkholderia cepacia complex pseudobacteremia associated with intrinsically contaminated commercial 0.5% chlorhexidine solution. Am J Infect Control 2015;43:266–268 [CrossRef][PubMed]
    [Google Scholar]
  12. Lee S, Han SW, Kim G, Song DY, Lee JC et al. An outbreak of Burkholderia cenocepacia associated with contaminated chlorhexidine solutions prepared in the hospital. Am J Infect Control 2013;41:e93–e96 [CrossRef][PubMed]
    [Google Scholar]
  13. Marigliano A, D'Errico MM, Pellegrini I, Savini S, Prospero E et al. Ultrasound echocardiographic gel contamination by Burkholderia cepacia in an Italian hospital. J Hosp Infect 2010;76:360–361 [CrossRef][PubMed]
    [Google Scholar]
  14. Zlosnik JE, Zhou G, Brant R, Henry DA, Hird TJ et al. Burkholderia species infections in patients with cystic fibrosis in British Columbia, Canada. 30 years' experience. Ann Am Thorac Soc 2015;12:70–78 [CrossRef][PubMed]
    [Google Scholar]
  15. Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010;23:299–323 [CrossRef][PubMed]
    [Google Scholar]
  16. Reik R, Spilker T, Lipuma JJ. Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 2005;43:2926–2928 [CrossRef]
    [Google Scholar]
  17. Pope CE, Short P, Carter PE. Species distribution of Burkholderia cepacia complex isolates in cystic fibrosis and non-cystic fibrosis patients in New Zealand. J Cyst Fibros 2010;9:442–446 [CrossRef][PubMed]
    [Google Scholar]
  18. Ramsay KA, Butler CA, Paynter S, Ware RS, Kidd TJ et al. Factors influencing acquisition of Burkholderia cepacia complex organisms in patients with cystic fibrosis. J Clin Microbiol 2013;51:3975–3980 [CrossRef][PubMed]
    [Google Scholar]
  19. Lupo A, Isis E, Tinguely R, Endimiani A, Clonality EA. Clonality and antimicrobial susceptibility of Burkholderia cepacia complex isolates collected from cystic fibrosis patients during 1998-2013 in Bern, Switzerland. New Microbiol 2015;38:281–288[PubMed]
    [Google Scholar]
  20. Medina-Pascual MJ, Valdezate S, Villalón P, Garrido N, Rubio V et al. Identification, molecular characterisation and antimicrobial susceptibility of genomovars of the Burkholderia cepacia complex in Spain. Eur J Clin Microbiol Infect Dis 2012;31:3385–3396 [CrossRef][PubMed]
    [Google Scholar]
  21. Spicuzza L, Sciuto C, Vitaliti G, di Dio G, Leonardi S et al. Emerging pathogens in cystic fibrosis: ten years of follow-up in a cohort of patients. Eur J Clin Microbiol Infect Dis 2009;28:191–195 [CrossRef][PubMed]
    [Google Scholar]
  22. De Boeck K, Malfroot A, Van Schil L, Lebecque P, Knoop C et al. Epidemiology of Burkholderia cepacia complex colonisation in cystic fibrosis patients. Eur Respir J 2004;23:851–856 [CrossRef][PubMed]
    [Google Scholar]
  23. Mcdowell A, Mahenthiralingam E, Dunbar KE, Moore JE, Crowe M et al. Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients: issues related to patient segregation. J Med Microbiol 2004;53:663–668 [CrossRef][PubMed]
    [Google Scholar]
  24. Segonds C, Clavel-Batut P, Thouverez M, Grenet D, Le Coustumier A et al. Microbiological and epidemiological features of clinical respiratory isolates of Burkholderia gladioli. J Clin Microbiol 2009;47:1510–1516 [CrossRef][PubMed]
    [Google Scholar]
  25. Kennedy MP, Coakley RD, Donaldson SH, Aris RM, Hohneker K et al. Burkholderia gladioli: five year experience in a cystic fibrosis and lung transplantation center. J Cyst Fibros 2007;6:267–273 [CrossRef][PubMed]
    [Google Scholar]
  26. Quon BS, Reid JD, Wong P, Wilcox PG, Javer A et al. Burkholderia gladioli - a predictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis. Can Respir J 2011;18:e64–e65 [CrossRef][PubMed]
    [Google Scholar]
  27. Cystic Fibrosis Trust 2010; Laboratory standards for processing microbiological samples from people with cystic fibrosis. www.cysticfibrosis.org.uk/~/media/documents/the-work-we-do/care/consensus-docs-with-new-address/laboratory-standards.ashx?la=en [accessed 7 December 2016]
  28. Turton JF, Arif N, Hennessy D, Kaufmann ME, Pitt TL. Revised approach for identification of isolates within the Burkholderia cepacia complex and description of clinical isolates not assigned to any of the known genomovars. J Clin Microbiol 2007;45:3105–3108 [CrossRef][PubMed]
    [Google Scholar]
  29. Novak RT, Glass MB, Gee JE, Gal D, Mayo MJ et al. Development and evaluation of a real-time PCR assay targeting the type III secretion system of Burkholderia pseudomallei. J Clin Microbiol 2006;44:85–90 [CrossRef][PubMed]
    [Google Scholar]
  30. Payne GW, Vandamme P, Morgan SH, Lipuma JJ, Coenye T et al. Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 2005;71:3917–3927 [CrossRef][PubMed]
    [Google Scholar]
  31. Baldwin A, Mahenthiralingam E, Thickett KM, Honeybourne D, Maiden MC et al. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 2005;43:4665–4673 [CrossRef][PubMed]
    [Google Scholar]
  32. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001;48:5–16 [CrossRef][PubMed]
    [Google Scholar]
  33. CLSI Performance Standards for Antimicrobial Susceptibility Testing; 26th informational supplement. CLSI document M100-S26. Wayne, PA: Clinical and Laboratory Standards Institute; 2016
  34. CLSI Performance Standards for Antimicrobial Susceptibility Testing; 26th informational supplement. CLSI document M45-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2016
  35. Turton JF, Kaufmann ME, Mustafa N, Kawa S, Clode FE et al. Molecular comparison of isolates of Burkholderia multivorans from patients with cystic fibrosis in the United Kingdom. J Clin Microbiol 2003;41:5750–5754 [CrossRef][PubMed]
    [Google Scholar]
  36. Nørskov-Lauritsen N, Johansen HK, Fenger MG, Nielsen XC, Pressler T et al. Unusual distribution of Burkholderia cepacia complex species in Danish cystic fibrosis clinics may stem from restricted transmission between patients. J Clin Microbiol 2010;48:2981–2983 [CrossRef][PubMed]
    [Google Scholar]
  37. Deris ZZ, van Rostenberghe H, Habsah H, Noraida R, Tan GC et al. First isolation of Burkholderia tropica from a neonatal patient successfully treated with imipenem. Int J Infect Dis 2010;14:e73–e74 [CrossRef][PubMed]
    [Google Scholar]
  38. Reis VM, Estrada-de Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 2004;54:2155–2162 [CrossRef][PubMed]
    [Google Scholar]
  39. Geake JB, Reid DW, Currie BJ, Bell SCMelioid CF Investigators et al. An international, multicentre evaluation and description of Burkholderia pseudomallei infection in cystic fibrosis. BMC Pulm Med 2015;15:116–126 [CrossRef][PubMed]
    [Google Scholar]
  40. EUCAST 2013; Antimicrobial susceptibility testing of Burkholderia cepacia complex (BCC). www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/BCC_susceptibility_testing_130719.pdf [accessed 7 December 2016]
  41. Kidd TJ, Douglas JM, Bergh HA, Coulter C, Bell SC. Burkholderia cepacia complex epidemiology in persons with cystic fibrosis from Australia and New Zealand. Res Microbiol 2008;159:194–199 [CrossRef][PubMed]
    [Google Scholar]
  42. Martin K, Baddal B, Mustafa N, Perry C, Underwood A et al. Clusters of genetically similar isolates of Pseudomonas aeruginosa from multiple hospitals in the UK. J Med Microbiol 2013;62:988–1000 [CrossRef][PubMed]
    [Google Scholar]
  43. Jacobson M, Wray R, Kovach D, Henry D, Speert D et al. Sustained endemicity of Burkholderia cepacia complex in a pediatric institution, associated with contaminated ultrasound gel. Infect Control Hosp Epidemiol 2006;27:362–366 [CrossRef][PubMed]
    [Google Scholar]
  44. Goldberg JB, Ganesan S, Comstock AT, Zhao Y, Sajjan US. Cable pili and the associated 22 kDa adhesin contribute to Burkholderia cenocepacia persistence in vivo. PLoS One 2011;6:e22435 [CrossRef][PubMed]
    [Google Scholar]
  45. Turton JF, O'Brien E, Megson B, Kaufmann ME, Pitt TL. Strains of Burkholderia cenocepacia genomovar IIIA possessing the cblA gene that are distinct from ET12. Diagn Microbiol Infect Dis 2009;64:94–97 [CrossRef][PubMed]
    [Google Scholar]
  46. Sajjan U, Liu L, Lu A, Spilker T, Forstner J et al. Lack of cable pili expression by cblA-containing Burkholderia cepacia complex. Microbiology 2002;148:3477–3484 [CrossRef][PubMed]
    [Google Scholar]
  47. Cunha MV, Leitão JH, Mahenthiralingam E, Vandamme P, Lito L et al. Molecular analysis of Burkholderia cepacia complex isolates from a Portuguese cystic fibrosis center: a 7-year study. J Clin Microbiol 2003;41:4113–4120 [CrossRef][PubMed]
    [Google Scholar]
  48. Sun L, Jiang RZ, Steinbach S, Holmes A, Campanelli C et al. The emergence of a highly transmissible lineage of cbl+Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat Med 1995;1:661–666 [CrossRef][PubMed]
    [Google Scholar]
  49. Jones AM, Dodd ME, Govan JR, Barcus V, Doherty CJ et al. Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax 2004;59:948–951 [CrossRef][PubMed]
    [Google Scholar]
  50. Kalish LA, Waltz DA, Dovey M, Potter-Bynoe G, Mcadam AJ et al. Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. Am J Respir Crit Care Med 2006;173:421–425 [CrossRef][PubMed]
    [Google Scholar]
  51. Mahenthiralingam E, Vandamme P, Campbell ME, Henry DA, Gravelle AM et al. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis 2001;33:1469–1475 [CrossRef][PubMed]
    [Google Scholar]
  52. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  53. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  54. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  55. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000458
Loading
/content/journal/jmm/10.1099/jmm.0.000458
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error