1887

Abstract

Amikacin is one of the most effective antibiotics against infections, but because of its high toxicity, the use of this antibiotic has been clinically limited. In the present study, amikacin was successfully loaded into a new formulation of nanoparticles (NPs) based on poly(,-lactide-co-glycolide) 50 : 50 in order to enhance the treatment efficacy. The synthetized amikacin-loaded PLGA nanoparticles with high drug loading and stability were used to eliminate . cells in planktonic and biofilm states.

PAO1 biofilm susceptibility studies were done using the minimum biofilm eradication concentration assay. The association of fluorescently labeled amikacin-loaded nanoparticles (A-NPs) with mouse monocyte macrophage cells (RAW 264.7), and the nanoparticles ability to interact and eradicate the bacterial cells even in the form of biofilms, was investigated using Flow cytometric studies and confocal laser scanning microscopy.

Flow cytometric studies showed that these NPs were able to interact with planktonic and biofilm bacterial cells. Moreover, following 1 h of incubation of A-NPs with 1-day-old biofilm, it was found that particles penetrate through the entire biofilm thickness. Live/dead fluorescent staining followed by CLSM analysis showed that the A-NPs were more effective than free drug in biofilm eradication.

The good antibacterial and antibiofilm activities of A-NPs, in addition to their ability to enter macrophages without any cytotoxicity for these cells, make them a potential candidate to treat infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000430
2017-02-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/2/137.html?itemId=/content/journal/jmm/10.1099/jmm.0.000430&mimeType=html&fmt=ahah

References

  1. Banadkoki AZ, Keshavarzmehr M, Afshar Z, Aleyasin N, Fatemi MJ et al. Protective effect of pilin protein with alum+naloxone adjuvant against acute pulmonary Pseudomonas aeruginosa infection. Biologicals 2016; 44:367–373 [View Article][PubMed]
    [Google Scholar]
  2. Breidenstein EB, de la Fuente-Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19:419–426 [View Article][PubMed]
    [Google Scholar]
  3. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 2003; 5:1213–1219[PubMed] [CrossRef]
    [Google Scholar]
  4. Caulcott CA, Brown MR, Gonda I. Evidence for small pores in the outer membrane of Pseudomonas aeruginosa. FEMS Microbiol Lett 1984; 21:119–123 [CrossRef]
    [Google Scholar]
  5. Wilkins M, Hall-Stoodley L, Allan RN, Faust SN. New approaches to the treatment of biofilm-related infections. J Infect 2014; 69:S47–S52 [View Article][PubMed]
    [Google Scholar]
  6. Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2000; 44:640–646[PubMed] [CrossRef]
    [Google Scholar]
  7. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 2013; 16:580–589 [View Article][PubMed]
    [Google Scholar]
  8. Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 2014; 62:32–37 [View Article][PubMed]
    [Google Scholar]
  9. Chua SL, Yam JK, Hao P, Adav SS, Salido MM et al. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commun 2016; 7:10750 [View Article][PubMed]
    [Google Scholar]
  10. Lewis K. Persister cells. Annu Rev Microbiol 2010; 64:357–372 [CrossRef]
    [Google Scholar]
  11. Wilton M, Charron-Mazenod L, Moore R, Lewenza S. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:544–553 [CrossRef]
    [Google Scholar]
  12. Ghaffari S, Varshosaz J, Saadat A, Atyabi F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomedicine 2011; 6:35–43
    [Google Scholar]
  13. Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 2006; 70:140–150 [View Article][PubMed]
    [Google Scholar]
  14. López-Díez EC, Winder CL, Ashton L, Currie F, Goodacre R. Monitoring the mode of action of antibiotics using Raman spectroscopy: investigating subinhibitory effects of amikacin on Pseudomonas aeruginosa. Anal Chem 2005; 77:2901–2906 [View Article][PubMed]
    [Google Scholar]
  15. Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010; 17:585–594[PubMed] [CrossRef]
    [Google Scholar]
  16. Abdollahi S, Lotfipour F. PLGA-and PLA-based polymeric nanoparticles for antimicrobial drug delivery. Biomed Int 2012; 3:11–16
    [Google Scholar]
  17. Ratjen F, Brockhaus F, Angyalosi G. Aminoglycoside therapy against Pseudomonas aeruginosa in cystic fibrosis: a review. J Cyst Fibros 2009; 8:361–369 [View Article][PubMed]
    [Google Scholar]
  18. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 2012; 8:147–166
    [Google Scholar]
  19. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 2011; 19:129–141 [View Article][PubMed]
    [Google Scholar]
  20. Sabaeifard P, Abdi-Ali A, Soudi MR, Gamazo C, Irache JM. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur J Pharm Sci 2016; 93:392–398 [View Article][PubMed]
    [Google Scholar]
  21. Harrison JJ, Stremick CA, Turner RJ, Allan ND, Olson ME et al. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 2010; 5:1236–1254 [View Article][PubMed]
    [Google Scholar]
  22. Harrison JJ, Ceri H, Yerly J, Stremick CA, Hu Y et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary biofilm device. Biol Proced Online 2006; 8:194–215 [View Article][PubMed]
    [Google Scholar]
  23. Camacho AI, Souza-Rebouças J, Irache JM, Gamazo C. Towards a non-living vaccine against Shigella flexneri: from the inactivation procedure to protection studies. Methods 2013; 60:264–268 [View Article][PubMed]
    [Google Scholar]
  24. Bahnemann HG. Inactivation of viral antigens for vaccine preparation with particular reference to the application of binary ethylenimine. Vaccine 1990; 8:299–303[PubMed] [CrossRef]
    [Google Scholar]
  25. Waters V, Ratjen F. Inhaled liposomal amikacin. Expert Rev Respir Med 2014; 8:401–409 [CrossRef]
    [Google Scholar]
  26. Italia JL, Bhatt DK, Bhardwaj V, Tikoo K, Kumar MN. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J Control Release 2007; 119:197–206 [View Article][PubMed]
    [Google Scholar]
  27. Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F et al. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 2010; 13:207–212 [View Article][PubMed]
    [Google Scholar]
  28. Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF et al. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine 2012; 7:4053 [View Article][PubMed]
    [Google Scholar]
  29. Bester E, Wolfaardt G, Joubert L, Garny K, Saftic S. Planktonic-cell yield of a pseudomonad biofilm. Appl Environ Microbiol 2005; 71:7792–7798 [View Article][PubMed]
    [Google Scholar]
  30. Allison DG, Evans DJ, Brown MR, Gilbert P. Possible involvement of the division cycle in dispersal of Escherichia coli from biofilms. J Bacteriol 1990; 172:1667–1669[PubMed] [CrossRef]
    [Google Scholar]
  31. Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother 2008; 61:859–868 [View Article][PubMed]
    [Google Scholar]
  32. Abdi-Ali A, Mohammadi-Mehr M, Agha Alaei Y. Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa. Int J Antimicrob Agents 2006; 27:196–200 [View Article][PubMed]
    [Google Scholar]
  33. Hoffman LR, D'Argenio DA, Maccoss MJ, Zhang Z, Jones RA et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436:1171–1175 [View Article][PubMed]
    [Google Scholar]
  34. Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 2013; 15:2865–2878 [View Article][PubMed]
    [Google Scholar]
  35. Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 2015; 15:36 [View Article][PubMed]
    [Google Scholar]
  36. Cogan NG, Cortez R, Fauci L. Modeling physiological resistance in bacterial biofilms. Bull Math Biol 2005; 67:831–853 [View Article][PubMed]
    [Google Scholar]
  37. Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 2001; 183:6746–6751 [View Article][PubMed]
    [Google Scholar]
  38. Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q et al. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa. J Basic Microbiol 2014; 54:688–699 [View Article][PubMed]
    [Google Scholar]
  39. Dillen K, Bridts C, van der Veken P, Cos P, Vandervoort J et al. Adhesion of PLGA or Eudragit/PLGA nanoparticles to Staphylococcus and Pseudomonas. Int J Pharm 2008; 349:234–240 [View Article][PubMed]
    [Google Scholar]
  40. Ikuma K, Decho AW, Lau B. When Nanoparticles Meet Biofilms-Interactions Guiding the Environmental Fate and Accumulation of Nanoparticles vol. 6 Frontiers in Microbiology; 2015 pp. 591
    [Google Scholar]
  41. Peulen TO, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. Environ Sci Technol 2011; 45:3367–3373 [View Article][PubMed]
    [Google Scholar]
  42. Ansari MA, Khan HM, Khan AA, Cameotra SS, Pal R. Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Appl Nanoscience 2014; 4:859–868 [CrossRef]
    [Google Scholar]
  43. Rampersad SN. Multiple applications of Alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012; 12:12347–12360 [View Article][PubMed]
    [Google Scholar]
  44. Grabowski N, Hillaireau H, Vergnaud J, Santiago LA, Kerdine-Romer S et al. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells. Int J Pharm 2013; 454:686–694 [View Article][PubMed]
    [Google Scholar]
  45. Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm 2015; 89:163–174 [View Article][PubMed]
    [Google Scholar]
  46. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today 2015; 10:487–510 [View Article][PubMed]
    [Google Scholar]
  47. Nicolete R, dos Santos DF, Faccioli LH. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol 2011; 11:1557–1563 [View Article][PubMed]
    [Google Scholar]
  48. Ojer P, Iglesias T, Azqueta A, Irache JM, López de Cerain A. Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs. Eur J Pharm Biopharm 2015; 97:206–217 [View Article][PubMed]
    [Google Scholar]
  49. Imbuluzqueta E, Lemaire S, Gamazo C, Elizondo E, Ventosa N et al. Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. J Antimicrob Chemother 2012; 67:2158–2164 [View Article][PubMed]
    [Google Scholar]
  50. de Faria TJ, Roman M, de Souza NM, de Vecchi R, de Assis JV et al. An isoniazid analogue promotes mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob Agents Chemother 2012; 56:2259–2267 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.000430
Loading
/content/journal/jmm/10.1099/jmm.0.000430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error