1887

Abstract

Purpose. The Miranda donkey (Equus asinus) is an endangeredasinine from Miranda do Douro region, located in the north east of Portugal. We studied the antimicrobial resistance and virulence genes in Escherichia coli and Enterococcus spp. isolates from these animals.

Methodology. In March 2014, a total of 66 faecal samples were recovered from independent animals. Antibiotic resistance was determined by the disc diffusion method. Carriage of genes coding for antibiotic-resistant and virulent factors was analysed by PCR.

Results. A total of 66 E. coli and 41 enterococcal isolates were detected, with Enterococcus faecium (61 %) and Enterococcus hirae (24 %) being the most prevalent species. For enterococcal isolates, high percentages of resistance rates to tetracycline (68.3 %), quinupristin/dalfopristin (51.2 %) and ciprofloxacin (48.8 %) were observed. The genes erm(A) and/or erm(B), tet(M) and/or tet(L), vat(D) and/or vat(E) and aph(3′)-IIIa were also found. The most frequent virulence gene detected was gel(E), followed by ace, cpd and hyl. Escherichia coli isolates were highly resistant to streptomycin (78 %), whereas 39 % of them exhibited resistance to aminoglycosides and tetracycline. Genes sul1 and/or sul2 were detected in 66.7 % of trimethoprim/sulfamethoxazole-resistant isolates. The virulence genes detected were fim(A) (46 %) and cnf1 (27 %).

Conclusion.. To the best of our knowledge, this is the first report showing antibiotic resistance among Escherichia coli and Enterococcus spp. isolates from the Miranda donkey in Portugal, indicating possible antibiotic-resistant bacterial reservoirs. However, the detection of these resistances presents a low risk for other animals and human beings in that rural area.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000423
2017-03-07
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/2/191.html?itemId=/content/journal/jmm/10.1099/jmm.0.000423&mimeType=html&fmt=ahah

References

  1. Höjgård S. Antibiotic resistance – why is the problem so difficult to solve?. Infect Ecol Epidemiol 2012;2: [CrossRef][PubMed]
    [Google Scholar]
  2. Moscow JA, Cowan KH. Multidrug resistance. J Natl Cancer Inst 1988;80:14–20 [CrossRef][PubMed]
    [Google Scholar]
  3. van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 2015;112:5649–5654 [CrossRef][PubMed]
    [Google Scholar]
  4. Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 2013;4:96 [CrossRef]
    [Google Scholar]
  5. Bengtsson-Palme J, Larsson DG. Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 2015;13:396 [CrossRef][PubMed]
    [Google Scholar]
  6. Li P, Wu D, Liu K, Suolang S, He T et al. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs. PLoS One 2014;9:e95623 [CrossRef][PubMed]
    [Google Scholar]
  7. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 2000;37:127–137[PubMed][CrossRef]
    [Google Scholar]
  8. Caniça M, Manageiro V, Jones-Dias D, Clemente L, Gomes-Neves E et al. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res Microbiol 2015;166:594–600 [CrossRef][PubMed]
    [Google Scholar]
  9. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T 2015;40:277–283[PubMed]
    [Google Scholar]
  10. Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol 2013;4:22 [CrossRef][PubMed]
    [Google Scholar]
  11. Al-Bahry SN, Mahmoud IY, Al-Belushi KI, Elshafie AE, Al-Harthy A et al. Coastal sewage discharge and its impact on fish with reference to antibiotic resistant enteric bacteria and enteric pathogens as bio-indicators of pollution. Chemosphere 2009;77:1534–1539 [CrossRef][PubMed]
    [Google Scholar]
  12. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010;74:417–433 [CrossRef][PubMed]
    [Google Scholar]
  13. Espinosa-Gongora C, Shah SQ, Jessen LR, Bortolaia V, Langebæk R et al. Quantitative assessment of faecal shedding of β-lactam-resistant Escherichia coli and enterococci in dogs. Vet Microbiol 2015;181:298–302 [CrossRef][PubMed]
    [Google Scholar]
  14. Martínez JL. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front Microbiol 2011;2:265 [CrossRef][PubMed]
    [Google Scholar]
  15. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015;13:42–51 [CrossRef][PubMed]
    [Google Scholar]
  16. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007;128:1037–1050 [CrossRef][PubMed]
    [Google Scholar]
  17. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 2015;13:310–317 [CrossRef][PubMed]
    [Google Scholar]
  18. Quaresma M, Payan-Carreira R. Characterization of the estrous cycle of Asinina de Miranda jennies (Equus asinus). Theriogenology 2015;83:616–624 [CrossRef][PubMed]
    [Google Scholar]
  19. Mcdonnell SM. Reproductive behavior of donkeys (Equus asinus). Appl Anim Behav Sci 1998;60:277–282 [CrossRef]
    [Google Scholar]
  20. Lu Z, Wang Y, Zhai L, Che Q, Wang H et al. Novel cathelicidin-derived antimicrobial peptides from Equus asinus. FEBS J 2010;277:2329–2339 [CrossRef][PubMed]
    [Google Scholar]
  21. Boulianne M, Arsenault J, Daignault D, Archambault M, Letellier A et al. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada. Can J Vet Res 2016;80:49–59[PubMed]
    [Google Scholar]
  22. Viegas S, Brandão J, Taylor H, Viegas C. Environmental microbiology for public health – capturing international developments in the field. Res Microbiol 2015;166:555–556 [CrossRef][PubMed]
    [Google Scholar]
  23. Dias D, Torres RT, Kronvall G, Fonseca C, Mendo S et al. Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal. Res Microbiol 2015;166:584–593 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhao XL, Tian LF, Zhang SJ, Li JM, Feng H et al. Novel human three-domain antibody fragments against sTNFalpha as well as tmTNFalpha with high affinity generated by the combination of ribosome display and E. coli expression system. Scand J Immunol 2016;83:267–278 [CrossRef][PubMed]
    [Google Scholar]
  25. Spellberg B. The future of antibiotics. Critical Care 2014;18:288 [CrossRef]
    [Google Scholar]
  26. Radhouani H, Silva N, Poeta P, Torres C, Correia S et al. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front Microbiol 2014;5:23 [CrossRef][PubMed]
    [Google Scholar]
  27. Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N et al. Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. Microbiol Res 2007;162:257–263 [CrossRef][PubMed]
    [Google Scholar]
  28. van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics. links between animals and humans. Int J Antimicrob Agents 2000;14:327–335 [CrossRef][PubMed]
    [Google Scholar]
  29. Gonçalves A, Poeta P, Monteiro R, Marinho C, Silva N et al. Comparative proteomics of an extended spectrum β-lactamase producing Escherichia coli strain from the Iberian wolf. J Proteomics 2014;104:80–93 [CrossRef][PubMed]
    [Google Scholar]
  30. Clemente L, Manageiro V, Jones-Dias D, Correia I, Themudo P et al. Antimicrobial susceptibility and oxymino-β-lactam resistance mechanisms in Salmonella enterica and Escherichia coli isolates from different animal sources. Res Microbiol 2015;166:574–583 [CrossRef][PubMed]
    [Google Scholar]
  31. Graham DW, Knapp CW, Christensen BT, Mccluskey S, Dolfing J. Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci Rep 2016;6:215–250 [CrossRef]
    [Google Scholar]
  32. Al Atya AK, Drider-Hadiouche K, Vachee A, Drider D. Potentialization of β-lactams with colistin: in case of extended spectrum β-lactamase producing Escherichia coli strains isolated from children with urinary infections. Res Microbiol 2016;167:215–221 [CrossRef][PubMed]
    [Google Scholar]
  33. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing USA: CLSI; 2015
    [Google Scholar]
  34. Billington EO, Phang SH, Gregson DB, Pitout JD, Ross T et al. Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: a population-based study. Int J Infect Dis 2014;26:76–82 [CrossRef][PubMed]
    [Google Scholar]
  35. Sáenz Y, Zarazaga M, Briñas L, Lantero M, Ruiz-Larrea F et al. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int J Antimicrob Agents 2001;18:353–358 [CrossRef][PubMed]
    [Google Scholar]
  36. Radhouani H, Poeta P, Gonçalves A, Pacheco R, Sargo R et al. Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J Med Microbiol 2012;61:837–843 [CrossRef][PubMed]
    [Google Scholar]
  37. Silva N, Igrejas G, Felgar A, Gonçalves A, Pacheco R et al. Molecular characterization of vanA-containing Enterococcus from migratory birds: song thrush (Turdus philomelos). Braz J Microbiol 2012;43:1026–1029 [CrossRef][PubMed]
    [Google Scholar]
  38. Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y et al. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol 1995;12:85–90 [CrossRef][PubMed]
    [Google Scholar]
  39. Ruiz J, Simon K, Horcajada JP, Velasco M, Barranco M et al. Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. J Clin Microbiol 2002;40:4445–4449 [CrossRef][PubMed]
    [Google Scholar]
  40. Eaton TJ, Gasson MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 2001;67:1628–1635 [CrossRef][PubMed]
    [Google Scholar]
  41. Mannu L, Paba A, Daga E, Comunian R, Zanetti S et al. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol 2003;88:291–304 [CrossRef][PubMed]
    [Google Scholar]
  42. Semedo T, Santos MA, Lopes MF, Figueiredo Marques JJ, Barreto Crespo MT et al. Virulence factors in food, clinical and reference enterococci: a common trait in the genus?. Syst Appl Microbiol 2003;26:13–22 [CrossRef][PubMed]
    [Google Scholar]
  43. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000;66:4555–4558 [CrossRef][PubMed]
    [Google Scholar]
  44. Cuthbertson L, Rogers GB, Walker AW, Oliver A, Green LE et al. Respiratory microbiota resistance and resilience to pulmonary exacerbation and subsequent antimicrobial intervention. ISME J 2016;10:1081–1091 [CrossRef][PubMed]
    [Google Scholar]
  45. Martínez JL, Coque TM, Baquero F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol 2015;13:396 [CrossRef][PubMed]
    [Google Scholar]
  46. Editorial N. Standing up to antimicrobial resistance. Nat Rev Microbiol 2010;8:836[PubMed]
    [Google Scholar]
  47. Dai F, Dalla Costa E, Murray LM, Canali E, Minero M. Welfare conditions of donkeys in Europe: initial outcomes from on-farm assessment. Animals 2016;6:5 [CrossRef][PubMed]
    [Google Scholar]
  48. Malissiova E, Arsenos G, Papademas P, Fletouris D, Manouras A et al. Assessment of donkey milk chemical, microbiological and sensory attributes in Greece and Cyprus. Int J Dairy Technol 2016;69:143–146 [CrossRef]
    [Google Scholar]
  49. Johns IC, Adams EL. Trends in antimicrobial resistance in equine bacterial isolates: 1999–2012. Vet Rec 2015;176:334 [CrossRef][PubMed]
    [Google Scholar]
  50. Ahmed MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann Clin Microbiol Antimicrob 2010;9:12 [CrossRef][PubMed]
    [Google Scholar]
  51. Momtaz H, Farzan R, Rahimi E, Safarpoor Dehkordi F, Souod N. Molecular characterization of shiga toxin-producing Escherichia coli isolated from ruminant and donkey raw milk samples and traditional dairy products in Iran. Sci World J 2012;2012:1–13 [CrossRef]
    [Google Scholar]
  52. Moura I, Radhouani H, Torres C, Poeta P, Igrejas G. Detection and genetic characterisation of vanA-containing Enterococcus strains in healthy lusitano horses. Equine Vet J 2010;42:181–183 [CrossRef][PubMed]
    [Google Scholar]
  53. Sousa M. Resistência a antibióticos em estirpes de Escherichia coli isoladas de douradas (Sparus aurata) Vila Real: UTAD; 2011
    [Google Scholar]
  54. Costa D, Poeta P, Sáenz Y, Coelho AC, Matos M et al. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet Microbiol 2008;127:97–105 [CrossRef][PubMed]
    [Google Scholar]
  55. Guerrero-Ramos E, Cordero J, Molina-González D, Poeta P, Igrejas G et al. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol 2016;53:156–164 [CrossRef][PubMed]
    [Google Scholar]
  56. Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E et al. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol 2014;14:187 [CrossRef][PubMed]
    [Google Scholar]
  57. Moura I, Torres C, Silva N, Somalo S, Igrejas G et al. Genomic description of antibiotic resistance in Escherichia coli and enterococci isolates from healthy Lusitano Horses. J Equine Vet Sci 2013;33:1057–1063 [CrossRef]
    [Google Scholar]
  58. Silva N, Igrejas G, Gonçalves A, Poeta P. Commensal gut bacteria: distribution of Enterococcus species and prevalence of Escherichia coli phylogenetic groups in animals and humans in Portugal. Ann Microbiol 2012;62:449–459 [CrossRef]
    [Google Scholar]
  59. Gonçalves A, Igrejas G, Radhouani H, Santos T, Monteiro R et al. Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Sci Total Environ 2013;456–457:115–119 [CrossRef][PubMed]
    [Google Scholar]
  60. Day MJ, Rodríguez I, van Essen-Zandbergen A, Dierikx C, Kadlec K et al. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J Antimicrob Chemother 2016;71:1178–1182 [CrossRef][PubMed]
    [Google Scholar]
  61. de Vaux A, Laguerre G, Diviès C, Prévost H. Enterococcus asini sp. nov. isolated from the caecum of donkeys (Equus asinus). Int J Syst Bacteriol 1998;48:383–387 [CrossRef][PubMed]
    [Google Scholar]
  62. Bustamante W, Alpízar A, Hernández S, Pacheco A, Vargas N et al. Predominance of vanA genotype among vancomycin-resistant Enterococcus isolates from poultry and swine in Costa Rica. Appl Environ Microbiol 2003;69:7414–7419 [CrossRef][PubMed]
    [Google Scholar]
  63. Gonçalves A. Análise molecular da resistência a antibióticos, factores de virulência e grupos filogenéticos em Escherichia coli e Enterococcus spp. de animais. Master Thesis. University of Trás-os-Montes and Alto Douro, Vila real, Portugal 2009;115
  64. Herskin MS, Jensen HE, Jespersen A, Forkman B, Jensen MB et al. Impact of the amount of straw provided to pigs kept in intensive production conditions on the occurrence and severity of gastric ulceration at slaughter. Res Vet Sci 2016;104:200–206 [CrossRef][PubMed]
    [Google Scholar]
  65. Marinho C, Igrejas G, Gonçalves A, Silva N, Santos T et al. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli. Anaerobe 2014;30:116–119 [CrossRef][PubMed]
    [Google Scholar]
  66. Singh BR. Prevalence of vancomycin resistance and multiple drug resistance in enterococci in equids in North India. J Infect Dev Ctries 2009;3:498–503 [CrossRef][PubMed]
    [Google Scholar]
  67. Katakweba AA, Møller KS, Muumba J, Muhairwa AP, Damborg P et al. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania. J Appl Microbiol 2015;118:966–975 [CrossRef][PubMed]
    [Google Scholar]
  68. Poeta P, Costa D, Sáenz Y, Klibi N, Ruiz-Larrea F et al. Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med B Infect Dis Vet Public Health 2005;52:396–402 [CrossRef][PubMed]
    [Google Scholar]
  69. Tacconelli E, Cataldo MA. Vancomycin-resistant enterococci (VRE): transmission and control. Int J Antimicrob Agents 2008;31:99–106 [CrossRef][PubMed]
    [Google Scholar]
  70. Poeta P, Igrejas G, Costa D, Sargo R, Rodrigues J et al. Virulence factors and bacteriocins in faecal enterococci of wild boars. J Basic Microbiol 2008;48:385–392 [CrossRef][PubMed]
    [Google Scholar]
  71. Belgacem ZB, Abriouel H, Omar NB, Lucas R, Martínez-Canamero M et al. Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control 2010;21:462–470 [CrossRef]
    [Google Scholar]
  72. Nogueira A, Dias A, Silva R. Contribuição das suiniculturas na selecção e disseminação de Enterococcus spp. resistentes às tetraciclinas. Master Thesis. Faculdade de Ciências da Saúde - UFP, Porto, Portugal 2008;p. 174
  73. Marinho C, Igrejas G, Gonçalves A, Silva N, Santos T et al. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli. Anaerobe 2014;30:116–119 [CrossRef][PubMed]
    [Google Scholar]
  74. Costa D, Poeta P, Sáenz Y, Vinué L, Coelho AC et al. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microb Drug Resist 2008;14:71–77 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000423
Loading
/content/journal/jmm/10.1099/jmm.0.000423
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error