Molecular epidemiology and antimicrobial resistance phenotypes of isolated from patients in three hospitals in southern Vietnam Open Access

Abstract

Multidrug resistance in the nosocomial pathogen limits therapeutic options and impacts on clinical care. Resistance against carbapenems, a group of last-resort antimicrobials for treating multidrug-resistant (MDR) infections, is associated with the expression (and over-expression) of carbapenemases encoded by the genes. The aim of this study was to determine the prevalence of antimicrobial-resistant associated with infection in three hospitals in southern Vietnam and to characterize the genetic determinants associated with resistance against carbapenems. We recovered a total of 160 isolates from clinical samples collected in three hospitals in southern Vietnam from 2012 to 2014. Antimicrobial resistance was common; 119/160 (74 %) of isolates were both MDR and extensively drug resistant (XDR). High-level imipenem resistance (>32 µg ml) was determined for 109/117 (91.6 %) of the XDR imipenem-nonsusceptible organisms, of which the majority (86.7 %) harboured the and genes associated with an IS element. Multiple-locus variable number tandem repeat analysis segregated the 160 into 107 different multiple-locus variable number tandem repeat analysis types, which described five major clusters. The biggest cluster was a clonal complex composed mainly of imipenem-resistant organisms that were isolated from all three of the study hospitals. Our study indicates a very high prevalence of MDR/XDR causing clinically significant infections in hospitals in southern Vietnam. These organisms commonly harboured the gene with IS and were carbapenem resistant; this resistance phenotype may explain their continued selection and ongoing transmission within the Vietnamese healthcare system.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000418
2017-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/1/46.html?itemId=/content/journal/jmm/10.1099/jmm.0.000418&mimeType=html&fmt=ahah

References

  1. Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2:e7 [View Article][PubMed]
    [Google Scholar]
  2. Abbott I, Cerqueira GM, Bhuiyan S, Peleg AY. Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect Ther 2013; 11:395–409 [View Article][PubMed]
    [Google Scholar]
  3. Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev 2014; 27:241–263 [View Article][PubMed]
    [Google Scholar]
  4. Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis 2010; 51:79–84 [View Article][PubMed]
    [Google Scholar]
  5. Higgins PG, Dammhayn C, Hackel M, Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 2010; 65:233–238 [View Article][PubMed]
    [Google Scholar]
  6. Poirel L, Leviandier C, Nordmann P. Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital. Antimicrob Agents Chemother 2006; 50:3992–3997 [View Article][PubMed]
    [Google Scholar]
  7. Brown S, Amyes S. OXA β-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother 2006; 57:1–3 [View Article][PubMed]
    [Google Scholar]
  8. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006; 27:351–353 [View Article][PubMed]
    [Google Scholar]
  9. Héritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect 2006; 12:123–130 [View Article][PubMed]
    [Google Scholar]
  10. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006; 258:72–77 [View Article][PubMed]
    [Google Scholar]
  11. Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014; 71:292–301 [View Article][PubMed]
    [Google Scholar]
  12. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013; 11:297–308 [View Article][PubMed]
    [Google Scholar]
  13. Nhu NT, Lan NP, Campbell JI, Parry CM, Thompson C et al. Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J Med Microbiol 2014; 63:1386–1394 [View Article][PubMed]
    [Google Scholar]
  14. Bouvet PJ, Grimont PA. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol 1987; 138:569–578[PubMed] [CrossRef]
    [Google Scholar]
  15. Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME et al. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 2006; 44:2974–2976 [View Article][PubMed]
    [Google Scholar]
  16. La Scola B, Gundi VA, Khamis A, Raoult D. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 2006; 44:827–832 [View Article][PubMed]
    [Google Scholar]
  17. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement CLSI document M100-S24 Wayne, PA: CLSI; 2014
    [Google Scholar]
  18. Huang XZ, Cash DM, Chahine MA, Nikolich MP, Craft DW. Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. J Med Microbiol 2012; 61:1532–1537 [View Article][PubMed]
    [Google Scholar]
  19. Segal H, Garny S, Elisha BG. Is ISABA-1 customized for Acinetobacter?. FEMS Microbiol Lett 2005; 243:425–429 [View Article][PubMed]
    [Google Scholar]
  20. Pourcel C, Minandri F, Hauck Y, D'Arezzo S, Imperi F et al. Identification of variable-number tandem-repeat (VNTR) sequences in Acinetobacter baumannii and interlaboratory validation of an optimized multiple-locus VNTR analysis typing scheme. J Clin Microbiol 2011; 49:539–548 [View Article][PubMed]
    [Google Scholar]
  21. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M et al. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 2012; 13:87 [View Article][PubMed]
    [Google Scholar]
  22. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  23. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article][PubMed]
    [Google Scholar]
  24. Abbo A, Navon-Venezia S, Hammer-Muntz O, Krichali T, Siegman-Igra Y et al. Multidrug-resistant Acinetobacter baumannii. Emerg Infect Dis 2005; 11:22–29 [View Article][PubMed]
    [Google Scholar]
  25. Liu Q, Li W, Du X, Li W, Zhong T et al. Risk and prognostic factors for multidrug-resistant Acinetobacter baumannii complex bacteremia: a retrospective study in a tertiary hospital of West China. PLoS One 2015; 10:e0130701 [View Article][PubMed]
    [Google Scholar]
  26. Trang NH, Nga TV, Campbell JI, Hiep NT, Farrar J et al. The characterization of ESBL genes in Escherichia coli and Klebsiella pneumoniae causing nosocomial infections in Vietnam. J Infect Dev Ctries 2013; 7:922–928[PubMed] [CrossRef]
    [Google Scholar]
  27. Van TD, Dinh QD, Vu PD, Nguyen TV, Pham CV et al. Antibiotic susceptibility and molecular epidemiology of Acinetobacter calcoaceticus–baumannii complex strains isolated from a referral hospital in northern Vietnam. J Glob Antimicrob Resist 2014; 2:318–321 [View Article][PubMed]
    [Google Scholar]
  28. Tada T, Miyoshi-Akiyama T, Kato Y, Ohmagari N, Takeshita N et al. Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomonas aeruginosa isolates in hospitals in Vietnam. BMC Infect Dis 2013; 13:251 [CrossRef]
    [Google Scholar]
  29. Brigante G, Migliavacca R, Bramati S, Motta E, Nucleo E et al. Emergence and spread of a multidrug-resistant Acinetobacter baumannii clone producing both the carbapenemase OXA-23 and the 16S rRNA methylase ArmA. J Med Microbiol 2012; 61:653–661 [View Article][PubMed]
    [Google Scholar]
  30. Dai W, Huang S, Sun S, Cao J, Zhang L. Nosocomial spread of carbapenem-resistant Acinetobacter baumannii (types ST75 and ST137) carrying blaOXA-23-like gene with an upstream ISAba1 in a Chinese hospital. Infect Genet Evol 2013; 14:98–101 [View Article][PubMed]
    [Google Scholar]
  31. Lee K, Kim MN, Choi TY, Cho SE, Lee S et al. Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. Int J Antimicrob Agents 2009; 33:520–524 [View Article][PubMed]
    [Google Scholar]
  32. Lee HY, Huang CW, Chen CL, Wang YH, Chang CJ et al. Emergence in Taiwan of novel imipenem-resistant Acinetobacter baumannii ST455 causing bloodstream infection in critical patients. J Microbiol Immunol Infect 2015; 48:588–596 [View Article][PubMed]
    [Google Scholar]
  33. Lin YC, Hsia KC, Chen YC, Sheng WH, Chang SC et al. Genetic basis of multidrug resistance in Acinetobacter clinical isolates in Taiwan. Antimicrob Agents Chemother 2010; 54:2078–2084 [View Article][PubMed]
    [Google Scholar]
  34. Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G et al. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2005; 49:202–208 [View Article][PubMed]
    [Google Scholar]
  35. Maâtallah M, Bakhrouf A, Habeeb MA, Turlej-Rogacka A, Iversen A et al. Four genotyping schemes for phylogenetic analysis of Pseudomonas aeruginosa: comparison of their congruence with multi-locus sequence typing. PLoS One 2013; 8:e82069 [View Article][PubMed]
    [Google Scholar]
  36. Tada T, Miyoshi-Akiyama T, Kato Y, Ohmagari N, Takeshita N et al. Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomonas aeruginosa isolates in hospitals in Vietnam. BMC Infect Dis 2013; 13:251 [View Article][PubMed]
    [Google Scholar]
  37. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR et al. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands. Antimicrob Agents Chemother 2013; 57:5239–5246 [View Article][PubMed]
    [Google Scholar]
  38. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 2010; 5:e10034 [View Article][PubMed]
    [Google Scholar]
  39. Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2013; 41:11–19 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000418
Loading
/content/journal/jmm/10.1099/jmm.0.000418
Loading

Data & Media loading...

Most cited Most Cited RSS feed