Characterization of nasal methicillin-resistant isolated from international human and veterinary surgeons Free

Abstract

Nasal colonization with methicillin-resistant (MRSA) is poorly described for surgeons, despite the increased exposure to nosocomial pathogens and at-risk patients. This study investigated the molecular epidemiology and antimicrobial resistance of 26 MRSA isolates cultured from the nares of an international cross-sectional study of 1166 human and 60 veterinary surgeons.

All isolates were subjected to , and multilocus sequence typing, and the presence of 22 virulence factors was screened for by PCR. Additionally, biofilm-forming ability, haemolytic activity, staphyloxanthin production and antibiotic resistance were determined. The genome of a rifampicin-resistant MRSA was sequenced.

Approximately half of the isolates belonged to well-described clonal lineages, ST1, ST5, ST8, ST45 and ST59, that have previously been associated with severe infections and increased patient mortality. Two of the three veterinarian MRSA belonged to epidemic livestock-associated MRSA clonal lineages (ST398 and ST8) previously associated with high transmission potential between animals and humans. The isolates did not display any consistent virulence gene pattern, and 35 % of the isolates carried at least one of the Panton–Valentine leukocidin (), exfoliative toxin () or toxic shock syndrome () genes. Resistance to rifampicin was detected in one veterinarian isolate and was found to be due to three mutations in the gene.

Surgeons occupy a critical position in the healthcare profession due to their close contact with patients. In this study, surgeons were found to be colonized with MRSA at low rates, similar to those of the general population, and the colonizing strains were often common clonal lineages.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000415
2017-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/3/360.html?itemId=/content/journal/jmm/10.1099/jmm.0.000415&mimeType=html&fmt=ahah

References

  1. O'Brien LM, Walsh EJ, Massey RC, Peacock SJ, Foster TJ. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 2002; 4:759–770[PubMed] [CrossRef]
    [Google Scholar]
  2. Cole AM, Tahk S, Oren A, Yoshioka D, Kim YH et al. Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol 2001; 8:1064–1069 [View Article][PubMed]
    [Google Scholar]
  3. Peacock SJ, Justice A, Griffiths D, de Silva GD, Kantzanou MN et al. Determinants of acquisition and carriage of Staphylococcus aureus in infancy. J Clin Microbiol 2003; 41:5718–5725[PubMed] [CrossRef]
    [Google Scholar]
  4. Sivaraman K, Venkataraman N, Cole AM. Staphylococcus aureus nasal carriage and its contributing factors. Future Microbiol 2009; 4:999–1008 [View Article][PubMed]
    [Google Scholar]
  5. Gamblin J, Jefferies JM, Harris S, Ahmad N, Marsh P et al. Nasal self-swabbing for estimating the prevalence of Staphylococcus aureus in the community. J Med Microbiol 2013; 62:437–440 [View Article][PubMed]
    [Google Scholar]
  6. Kuehnert MJ, Kruszon-Moran D, Hill HA, Mcquillan G, Mcallister SK et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis 2006; 193:172–179 [View Article][PubMed]
    [Google Scholar]
  7. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005; 5:751–762 [View Article][PubMed]
    [Google Scholar]
  8. Tong SY, Chen LF, Fowler VG. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance?. Semin Immunopathol 2012; 34:185–200 [View Article][PubMed]
    [Google Scholar]
  9. Morgenstern M, Erichsen C, Hackl S, Mily J, Militz M et al. Antibiotic resistance of commensal Staphylococcus aureus and coagulase-negative staphylococci in an international cohort of surgeons: a prospective point-prevalence study. PLoS One 2016; 11:e0148437 [View Article][PubMed]
    [Google Scholar]
  10. Champion AE, Goodwin TA, Brolinson PG, Werre SR, Prater MR et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from healthy university student athletes. Ann Clin Microbiol Antimicrob 2014; 13:33 [View Article][PubMed]
    [Google Scholar]
  11. Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 2010; 64:143–162 [View Article][PubMed]
    [Google Scholar]
  12. Otto M. MRSA virulence and spread. Cell Microbiol 2012; 14:1513–1521 [View Article][PubMed]
    [Google Scholar]
  13. Catry B, Van Duijkeren E, Pomba MC, Greko C, Moreno MA et al. Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health. Epidemiol Infect 2010; 138:626–644 [View Article][PubMed]
    [Google Scholar]
  14. Cuny C, Nathaus R, Layer F, Strommenger B, Altmann D et al. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs. PLoS One 2009; 4:e6800 [View Article][PubMed]
    [Google Scholar]
  15. van Cleef BA, Monnet DL, Voss A, Krziwanek K, Allerberger F et al. Livestock-associated methicillin-resistant Staphylococcus aureus in humans, Europe. Emerg Infect Dis 2011; 17:502–505 [View Article][PubMed]
    [Google Scholar]
  16. Herbert S, Ziebandt AK, Ohlsen K, Schäfer T, Hecker M et al. Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect Immun 2010; 78:2877–2889 [View Article][PubMed]
    [Google Scholar]
  17. Stepanović S, Vuković D, Hola V, di Bonaventura G, Djukić S et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007; 115:891–899 [View Article][PubMed]
    [Google Scholar]
  18. Post V, Wahl P, Uçkay I, Ochsner P, Zimmerli W et al. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int J Med Microbiol 2014; 304:565–576 [View Article][PubMed]
    [Google Scholar]
  19. von Eiff C, Friedrich AW, Peters G, Becker K. Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis 2004; 49:157–162 [View Article][PubMed]
    [Google Scholar]
  20. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 1999; 37:3556–3563[PubMed]
    [Google Scholar]
  21. Harmsen D, Claus H, Witte W, Rothgänger J, Claus H et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 2003; 41:5442–5448[PubMed] [CrossRef]
    [Google Scholar]
  22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  23. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  24. Holden MT, Lindsay JA, Corton C, Quail MA, Cockfield JD et al. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol 2010; 192:888–892 [View Article][PubMed]
    [Google Scholar]
  25. Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics 2007; 175:1251–1266 [View Article][PubMed]
    [Google Scholar]
  26. Méric G, Yahara K, Mageiros L, Pascoe B, Maiden MC et al. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter. PLoS One 2014; 9:e92798 [View Article][PubMed]
    [Google Scholar]
  27. Sheppard SK, Jolley KA, Maiden MC. A gene-by-gene approach to bacterial population genomics: whole genome MLST of Campylobacter. Genes (Basel) 2012; 3:261–277 [View Article][PubMed]
    [Google Scholar]
  28. Askarian M, Zeinalzadeh A, Japoni A, Alborzi A, Memish ZA. Prevalence of nasal carriage of methicillin-resistant Staphylococcus aureus and its antibiotic susceptibility pattern in healthcare workers at Namazi Hospital, Shiraz, Iran. Int J Infect Dis 2009; 13:e241e247 [View Article][PubMed]
    [Google Scholar]
  29. Gorwitz RJ, Kruszon-Moran D, Mcallister SK, Mcquillan G, Mcdougal LK et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 2008; 197:1226–1234 [View Article][PubMed]
    [Google Scholar]
  30. Johnston CP, Stokes AK, Ross T, Cai M, Carroll KC et al. Staphylococcus aureus colonization among healthcare workers at a tertiary care hospital. Infect Control Hosp Epidemiol 2007; 28:1404–1407 [View Article][PubMed]
    [Google Scholar]
  31. Hanselman BA, Kruth SA, Rousseau J, Low DE, Willey BM et al. Methicillin-resistant Staphylococcus aureus colonization in veterinary personnel. Emerg Infect Dis 2006; 12:1933–1938 [View Article][PubMed]
    [Google Scholar]
  32. Nübel U, Roumagnac P, Feldkamp M, Song JH, Ko KS et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 2008; 105:14130–14135 [View Article][PubMed]
    [Google Scholar]
  33. Rolo J, Miragaia M, Turlej-Rogacka A, Empel J, Bouchami O et al. High genetic diversity among community-associated Staphylococcus aureus in Europe: results from a multicenter study. PLoS One 2012; 7:e34768 [View Article][PubMed]
    [Google Scholar]
  34. Qu T, Feng Y, Jiang Y, Zhu P, Wei Z et al. Whole genome analysis of a community-associated methicillin-resistant Staphylococcus aureus ST59 isolate from a case of human sepsis and severe pneumonia in China. PLoS One 2014; 9:e89235 [View Article][PubMed]
    [Google Scholar]
  35. Zhang H, Xiao M, Kong F, O'Sullivan MV, Mao LL et al. A multicentre study of meticillin-resistant Staphylococcus aureus in acute bacterial skin and skin-structure infections in China: susceptibility to ceftaroline and molecular epidemiology. Int J Antimicrob Agents 2015; 45:347–350 [View Article][PubMed]
    [Google Scholar]
  36. Glasner C, Pluister G, Westh H, Arends JP, Empel J et al. Staphylococcus aureus spa type t437: identification of the most dominant community-associated clone from Asia across Europe. Clin Microbiol Infect 2015; 21:163.e1–163.e8 [View Article]
    [Google Scholar]
  37. van Duijkeren E, Moleman M, Sloet van Oldruitenborgh-Oosterbaan MM, Multem J, Troelstra A et al. Methicillin-resistant Staphylococcus aureus in horses and horse personnel: an investigation of several outbreaks. Vet Microbiol 2010; 141:96–102 [View Article][PubMed]
    [Google Scholar]
  38. Sanchez CJ Jr, Shiels SM, Tennent DJ, Hardy SK, Murray CK et al. Rifamycin derivatives are effective against staphylococcal biofilms in vitro and elutable from PMMA. Clin Orthop Relat Res 2015; 473:2874–2884 [View Article][PubMed]
    [Google Scholar]
  39. Varaldo PE, Debbia E, Schito GC. In vitro activities of rifapentine and rifampin, alone and in combination with six other antibiotics, against methicillin-susceptible and methicillin-resistant staphylococci of different species. Antimicrob Agents Chemother 1985; 27:615–618[PubMed] [CrossRef]
    [Google Scholar]
  40. Aubry-Damon H, Soussy CJ, Courvalin P. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1998; 42:2590–2594[PubMed]
    [Google Scholar]
  41. Wichelhaus T, Schäfer V, Brade V, Böddinghaus B. Differential effect of rpoB mutations on antibacterial activities of rifampicin and KRM-1648 against Staphylococcus aureus. J Antimicrob Chemother 2001; 47:153–156[PubMed] [CrossRef]
    [Google Scholar]
  42. Tang HJ, Lai CC, Hsueh PR, Chen CC, Wu KY et al. RNA polymerase B subunit gene mutations in biofilm-embedded methicillin-resistant Staphylococcus aureus following rifampin treatment. J Microbiol Immunol Infect 2016; 49:394–401 [CrossRef]
    [Google Scholar]
  43. Vitko NP, Richardson AR. Laboratory maintenance of methicillin-resistant Staphylococcus aureus (MRSA). Curr Protoc Microbiol 2013; Chapter 9:Unit 9C.2 [View Article][PubMed]
    [Google Scholar]
  44. Bukowski M, Wladyka B, Dubin G. Exfoliative toxins of Staphylococcus aureus. Toxins 2010; 2:1148–1165 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000415
Loading
/content/journal/jmm/10.1099/jmm.0.000415
Loading

Data & Media loading...

Most cited Most Cited RSS feed