1887

Abstract

Enterobacter aerogenes and Enterobacter cloacae complex are the two species of this genus most involved in healthcare-associated infections that are ESBL and carbapenemase producers. This study characterized, phenotypically and genotypically, 51 isolates of E. aerogenes and E. cloacae complex originating from infection or colonization in patients admitted to a public hospital in Recife, Pernambuco, Brazil, by antimicrobial susceptibility profile, analysis of β-lactamase genes (bla TEM, bla SHV, bla CTX-M, bla KPC, bla VIM, bla IMP and bla SPM), PCR and DNA sequencing, plasmid profile and ERIC-PCR. In both species, the genes bla TEM, bla CTX-M and bla KPC were detected. The DNA sequencing confirmed the variants bla TEM-1, bla CTX-M-15 and bla KPC-2 in isolates. More than one gene conferring resistance in the isolates, including the detection of the three previously cited genes in strains isolated from infection sites, was observed. The detection of bla CTX-M was more frequent in isolates from infection sites than from colonization. The gene bla KPC predominated in E. cloacae complex isolates obtained from infections; however, in E. aerogenes isolates, it predominated in samples obtained from colonization. A clonal relationship among all of E. aerogenes isolates was detected by ERIC-PCR. The majority of E. cloacae complex isolates presented the same ERIC-PCR pattern. Despite the clonal relation presented by the isolates using ERIC-PCR, different plasmid and resistance profiles and several resistance genes were observed. The clonal dissemination and the accumulation of β-lactam resistance determinants presented by the isolates demonstrated the ability of E. aerogenes and E. cloacae complex, obtained from colonization and infection, to acquire and maintain different resistance genes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000398
2017-02-06
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/1/70.html?itemId=/content/journal/jmm/10.1099/jmm.0.000398&mimeType=html&fmt=ahah

References

  1. Gonçalves CR, Vaz TM, Leite D, Pisani B, Simoes M et al. Molecular epidemiology of a nosocomial outbreak due to Enterobacter cloacae and Enterobacter agglomerans in Campinas, São Paulo, Brazil. Rev Inst Med Trop São Paulo 2000;42:1–7[PubMed][CrossRef]
    [Google Scholar]
  2. Lee CC, Lee NY, Yan JJ, Lee HC, Chen PL et al. Bacteremia due to extended-spectrum-β-lactamase-producing Enterobacter cloacae: role of carbapenem therapy. Antimicrob Agents Chemother 2010;54:3551–3556 [CrossRef][PubMed]
    [Google Scholar]
  3. Davin-Regli A, Pagès JM. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 2015;6:392 [CrossRef][PubMed]
    [Google Scholar]
  4. Lago A, Fuentefria SR, Fuentefria DB. Enterobactérias produtoras de ESBL em Passo Fundo, Estado do Rio Grande do Sul, Brasil. Rev Soc Bras Med Trop 2010;43:430–434 [CrossRef]
    [Google Scholar]
  5. Tuon FF, Scharf C, Rocha JL, Cieslinsk J, Becker GN et al. KPC-producing Enterobacter aerogenes infection. Braz J Infect Dis 2015;19:324–327 [CrossRef][PubMed]
    [Google Scholar]
  6. Dropa M, Balsalobre LC, Lincopan N, Mamizuka EM, Murakami T et al. Extended-spectrum beta-lactamases among Enterobacteriaceae isolated in a public hospital in Brazil. Rev Inst Med Trop Sao Paulo 2009;51:203–209 [CrossRef][PubMed]
    [Google Scholar]
  7. Chagas TP, Alves RM, Vallim DC, Seki LM, Campos LC et al. Diversity of genotypes in CTX-M-producing Klebsiella pneumoniae isolated in different hospitals in Brazil. Braz J Infect Dis 2011;15:420–425 [CrossRef][PubMed]
    [Google Scholar]
  8. Nogueira KS, Paganini MC, Conte A, Cogo LL, Taborda de Messias Reason I et al. Emergence of extended-spectrum β-lactamase producing Enterobacter spp. in patients with bacteremia in a tertiary hospital in southern Brazil. Enferm Infecc Microbiol Clin 2014;32:87–92 [CrossRef][PubMed]
    [Google Scholar]
  9. Nogueira KS, Conte D, Maia FV, Dalla-Costa LM. Distribution of extended-spectrum β-lactamase types in a Brazilian tertiary hospital. Rev Soc Bras Med Trop 2015;48:162–169 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen LR, Zhou HW, Cai JC, Zhang R, Chen GX. Detection of plasmid-mediated IMP-1 metallo-β-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate. J Zhejiang Univ Sci B 2009;10:348–354 [CrossRef][PubMed]
    [Google Scholar]
  11. Miró E, Segura C, Navarro F, Sorlí L, Coll P et al. Spread of plasmids containing the blaVIM-1 and blaCTX-M genes and the qnr determinant in Enterobacter cloacae, Klebsiella pneumoniae and Klebsiella oxytoca isolates. J Antimicrob Chemother 2010;65:661–665 [CrossRef][PubMed]
    [Google Scholar]
  12. Tavares CP, Pereira PS, Marques EA, Faria C, de Souza MP et al. Molecular epidemiology of KPC-2-producing Enterobacteriaceae (non-Klebsiella pneumoniae) isolated from Brazil. Diagn Microbiol Infect Dis 2015;82:326–330 [CrossRef][PubMed]
    [Google Scholar]
  13. Cabral AB, Melo RC, Maciel MA, Lopes AC. Multidrug resistance genes, including bla(KPC) and bla(CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 2012;45:572–578 [CrossRef][PubMed]
    [Google Scholar]
  14. Pereira PS, de Araujo CF, Seki LM, Zahner V, Carvalho-Assef AP et al. Update of the molecular epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil: spread of clonal complex 11 (ST11, ST437 and ST340). J Antimicrob Chemother 2013;68:312–316 [CrossRef][PubMed]
    [Google Scholar]
  15. de Cássia Andrade Melo R, de Barros EM, Loureiro NG, de Melo HR, Maciel MA et al. Presence of fimH, mrkD, and irp2 virulence genes in KPC-2-producing Klebsiella pneumoniae isolates in Recife-PE, Brazil. Curr Microbiol 2014;69:824–831 [CrossRef][PubMed]
    [Google Scholar]
  16. Cabral AB, Maciel MA, Barros JF, Antunes MM, Lopes AC. Detection of bla KPC-2 in Proteus mirabilis in Brazil. Rev Soc Bras Med Trop 2015;48:94–95 [CrossRef][PubMed]
    [Google Scholar]
  17. Martín IF, Thomas CM, Laing E, Abuoun M, La Ragione RM et al. Curing vector for IncI1 plasmids and its use to provide evidence for a metabolic burden of IncI1 CTX-M-1 plasmid pIFM3791 on Klebsiella pneumoniae. J Med Microbiol 2016;65:611–618 [CrossRef][PubMed]
    [Google Scholar]
  18. Andrade LN, Curiao T, Ferreira JC, Longo JM, Clímaco EC et al. Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother 2011;55:3579–3583 [CrossRef][PubMed]
    [Google Scholar]
  19. Ribeiro VB, Andrade LN, Linhares AR, Barin J, Darini AL et al. Molecular characterization of Klebsiella pneumoniae carbapenemase-producing isolates in Southern Brazil. J Med Microbiol 2013;62:1721–1727 [CrossRef][PubMed]
    [Google Scholar]
  20. Minarini LA, Clímaco EC, Guimarães DB, Ferreira JC, Palazzo IC et al. Clonal transmission of ESBL-producing Klebsiella spp. at a university hospital in Brazil. Curr Microbiol 2008;56:587–591 [CrossRef][PubMed]
    [Google Scholar]
  21. Tollentino FM, Polotto M, Nogueira ML, Lincopan N, Neves P et al. High prevalence of blaCTX-M extended spectrum β-lactamase genes in Klebsiella pneumoniae isolates from a tertiary care hospital: first report of blaSHV-12, blaSHV-31, blaSHV-38, and blaCTX-M-15 in Brazil. Microb Drug Resist 2011;17:7–16 [CrossRef][PubMed]
    [Google Scholar]
  22. Chang CL, Su LH, Lu CM, Tai FT, Huang YC et al. Outbreak of ertapenem-resistant Enterobacter cloacae urinary tract infections due to a contaminated ureteroscope. J Hosp Infect 2013;85:118–124 [CrossRef][PubMed]
    [Google Scholar]
  23. Rasheed JK, Anderson GJ, Yigit H, Queenan AM, Doménech-Sánchez A et al. Characterization of the extended-spectrum β-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob Agents Chemother 2000;44:2382–2388 [CrossRef][PubMed]
    [Google Scholar]
  24. Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL et al. Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 2002;209:161–168[PubMed]
    [Google Scholar]
  25. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:1151–1161 [CrossRef][PubMed]
    [Google Scholar]
  26. Dong F, Xu XW, Song WQ, P, Yu SJ et al. Characterization of multidrug-resistant and metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from a paediatric clinic in China. Chin Med J 2008;121:1611–1616[PubMed]
    [Google Scholar]
  27. Gales AC, Menezes LC, Silbert S, Sader HS. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J Antimicrob Chemother 2003;52:699–702 [CrossRef][PubMed]
    [Google Scholar]
  28. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  29. Duan H, Chai T, Liu J, Zhang X, Qi C et al. Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environ Res 2009;109:511–517 [CrossRef][PubMed]
    [Google Scholar]
  30. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233–2242[PubMed]
    [Google Scholar]
  31. Anastay M, Lagier E, Blanc V, Chardon H. Epidémiologie dês β-lactamases à spectre étendu (BLSE) chez lês entérobactéries dans un hôpital Du sud de la France,1997–2007. Pathol Biol 2013;61:38–43[CrossRef]
    [Google Scholar]
  32. Pestourie N, Garnier F, Barraud O, Bedu A, Ploy MC et al. Outbreak of AmpC β-lactamase-hyper-producing Enterobacter cloacae in a neonatal intensive care unit in a French teaching hospital. Am J Infect Control 2014;42:456–458 [CrossRef][PubMed]
    [Google Scholar]
  33. Jaskulski MR, Medeiros BC, Borges JV, Zalewsky R, Fonseca ME et al. Assessment of extended-spectrum β-lactamase, KPC carbapenemase and porin resistance mechanisms in clinical samples of Klebsiella pneumoniae and Enterobacter spp. Int J Antimicrob Agents 2013;42:76–79 [CrossRef][PubMed]
    [Google Scholar]
  34. Quiles MG, Rocchetti TT, Fehlberg LC, Kusano EJ, Chebabo A et al. Unusual association of NDM-1 with KPC-2 and armA among Brazilian Enterobacteriaceae isolates. Braz J Med Biol Res 2015;48:174–177 [CrossRef][PubMed]
    [Google Scholar]
  35. Band VI, Crispell EK, Napier BA, Herrera CM, Tharp GK et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat Microbiol 2016;1:16053 [CrossRef][PubMed]
    [Google Scholar]
  36. Guérin F, Isnard C, Sinel C, Morand P, Dhalluin A et al. Cluster-dependent colistin hetero-resistance in Enterobacter cloacae complex. J Antimicrob Chemother 2016;71:3058–3061 [CrossRef][PubMed]
    [Google Scholar]
  37. Seki LM, Pereira PS, De Souza M, Conceição MS, Marques EA et al. Molecular epidemiology of KPC-2- producing Klebsiella pneumoniae isolates in Brazil: the predominance of sequence type 437. Diagn Microbiol Infect Dis 2011;70:274–277 [CrossRef][PubMed]
    [Google Scholar]
  38. Seki LM, Pereira PS, de Souza Conceição M, Souza MJ, Marques EA et al. Molecular epidemiology of CTX-M producing Enterobacteriaceae isolated from bloodstream infections in Rio de Janeiro, Brazil: emergence of CTX-M-15. Braz J Infect Dis 2013;17:640–646 [CrossRef][PubMed]
    [Google Scholar]
  39. Calfee D, Jenkins SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol 2008;29:966–968 [CrossRef][PubMed]
    [Google Scholar]
  40. Siegel JD, Rhinehart E, Jackson M., Chiarello L. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control 2007;35:S165–S193 [CrossRef][PubMed]
    [Google Scholar]
  41. Schechner V, Kotlovsky T, Kazma M, Mishali H, Schwartz D et al. Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected?. Clin Microbiol Infect 2013;19:451–456 [CrossRef][PubMed]
    [Google Scholar]
  42. Oren I, Sprecher H, Finkelstein R, Hadad S, Neuberger A et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infect Control 2013;41:1167–1172 [CrossRef][PubMed]
    [Google Scholar]
  43. Hayden MK, Lin MY, Lolans K, Weiner S, Blom D et al. Prevention of colonization and infection by Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae in long-term acute-care hospitals. Clin Infect Dis 2015;60:1153–1161 [CrossRef][PubMed]
    [Google Scholar]
  44. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 2009;53:2227–2238 [CrossRef][PubMed]
    [Google Scholar]
  45. Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol 2007;2:501–512 [CrossRef][PubMed]
    [Google Scholar]
  46. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis 2002;34:634–640 [CrossRef][PubMed]
    [Google Scholar]
  47. Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-β-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis 2005;41:1549–1556 [CrossRef][PubMed]
    [Google Scholar]
  48. Yang D, Guo Y, Zhang Z. Combined porin loss and extended spectrum β-lactamase production is associated with an increasing imipenem minimal inhibitory concentration in clinical Klebsiella pneumoniae strains. Curr Microbiol 2009;58:366–370 [CrossRef][PubMed]
    [Google Scholar]
  49. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 2010;54:969–976 [CrossRef][PubMed]
    [Google Scholar]
  50. Lopes AC, Veras DL, Lima AM, Melo RC, Ayala J. bla(CTX-M-2) and bla(CTX-M-28) extended-spectrum β-lactamase genes and class 1 integrons in clinical isolates of Klebsiella pneumoniae from Brazil. Mem Inst Oswaldo Cruz 2010;105:163–167 [CrossRef][PubMed]
    [Google Scholar]
  51. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol 2012;3:110 [CrossRef][PubMed]
    [Google Scholar]
  52. Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008-2010). Diagn Microbiol Infect Dis 2012;73:354–360 [CrossRef][PubMed]
    [Google Scholar]
  53. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012;25:682–707 [CrossRef][PubMed]
    [Google Scholar]
  54. Monteiro J, Santos AF, Asensi MD, Peirano G, Gales AC. First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother 2009;53:333–334 [CrossRef][PubMed]
    [Google Scholar]
  55. Zavascki AP, Machado AB, de Oliveira KR, Superti SV, Pilger DA et al. KPC-2-producing Enterobacter cloacae in two cities from Southern Brazil. Int J Antimicrob Agents 2009;34:286–288 [CrossRef][PubMed]
    [Google Scholar]
  56. Ramos PI, Picão RC, Almeida LG, Lima NC, Girardello R et al. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 2014;15:54 [CrossRef][PubMed]
    [Google Scholar]
  57. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000;405:299–304 [CrossRef][PubMed]
    [Google Scholar]
  58. Cantón R, Oliver A, Coque TM, Varela MC, Pérez-Díaz JC et al. Epidemiology of extended-spectrum β-lactamase-producing Enterobacter isolates in a Spanish hospital during a 12-year period. J Clin Microbiol 2002;40:1237–1243[PubMed][CrossRef]
    [Google Scholar]
  59. Stoesser N, Sheppard AE, Shakya M, Sthapit B, Thorson S et al. Dynamics of MDR Enterobacter cloacae outbreaks in a neonatal unit in Nepal: insights using wider sampling frames and next-generation sequencing. J Antimicrob Chemother 2015;70:1008–1015 [CrossRef][PubMed]
    [Google Scholar]
  60. Bosi C, Davin-Regli A, Bornet C, Mallea M, Pages JM et al. Most Enterobacter aerogenes strains in France belong to a prevalent clone. J Clin Microbiol 1999;37:2165–2169[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000398
Loading
/content/journal/jmm/10.1099/jmm.0.000398
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error