1887

Abstract

Toxigenic corynebacteria are uncommon in the UK; however, laboratory confirmation by the national reference laboratory can inform public health action according to national guidelines. Standard phenotypic tests for identification and toxin expression of isolates can take from ≥24 to ≥48 h from receipt. To decrease the time to result, a real-time PCR (qPCR) assay was developed for confirmation of both identification of and / and detection of the diphtheria toxin gene. Target genes were the RNA polymerase β-subunit-encoding gene () and A-subunit of the diphtheria toxin gene (). Green fluorescent protein DNA () was used as an internal process control. qPCR results were obtained within 3 to 4 h after receipt of isolate. The assay was validated according to published guidelines and demonstrated high diagnostic sensitivity (100 %), high specificity (98–100 %) and positive and negative predictive values of 91 to 100 % and 100 %, respectively, compared to both block-based PCR and the Elek test, together with a greatly reduced time from isolate receipt to reporting. Limitations of the qPCR assay were the inability to distinguish between and and that the presence of the toxin gene as demonstrated by qPCR may not always predict toxin expression. Thus, confirmation of expression of diphtheria toxin is always sought using the phenotypic Elek test. The new qPCR assay was formally introduced as the front-line test for putative toxigenic corynebacteria to inform public health action in England and Wales on 1 April 2014.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000382
2016-12-16
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/12/1521.html?itemId=/content/journal/jmm/10.1099/jmm.0.000382&mimeType=html&fmt=ahah

References

  1. Abebe D., Sisay Tessema T.. 2015; Determination of Corynebacterium pseudotuberculosis prevalence and antimicrobial susceptibility pattern of isolates from lymph nodes of sheep and goats at an organic export abattoir, Modjo, Ethiopia. Lett Appl Microbiol61:469–476 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  3. Bonnet J. M., Begg N. T.. 1999; Control of diphtheria: guidance for consultants in communicable disease control. World Health Organization. Commun Dis Public Health2:242–249[PubMed]
    [Google Scholar]
  4. Both L., Neal S., De Zoysa A., Mann G., Czumbel I., Efstratiou A..Members of the European Diphtheria Surveillance Network 2014; External quality assessments for microbiologic diagnosis of diphtheria in Europe. J Clin Microbiol52:4381–4384 [CrossRef][PubMed]
    [Google Scholar]
  5. Both L., Collins S., De Zoysa A., White J., Mandal S., Efstratiou A.. 2015; Molecular and epidemiological review of toxigenic diphtheria infections in England between 2007 and 2013. J Clin Microbiol53:567–572 [CrossRef][PubMed]
    [Google Scholar]
  6. Burd E. M.. 2010; Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev23:550–576 [CrossRef][PubMed]
    [Google Scholar]
  7. Cassiday P. K., Pawloski L. C., Tiwari T., Sanden G. N., Wilkins P. P.. 2008; Analysis of toxigenic Corynebacterium ulcerans strains revealing potential for false-negative real-time PCR results. J Clin Microbiol46:331–333 [CrossRef][PubMed]
    [Google Scholar]
  8. Corboz L., Thoma R., Braun U., Zbinden R.. 1996; [Isolation of Corynebacterium diphtheriae subsp. belfanti from a cow with chronic active dermatitis] [Article in German]. Schweiz Arch Tierheilkd138:596–599[PubMed]
    [Google Scholar]
  9. Torres L. de F. C., Ribeiro D., Hirata R., Pacheco L. G. C., Souza M. C., dos Santos L. S., dos Santos C. S., Salah M., da Costa M. M. et al. 2013; Multiplex polymerase chain reaction to identify and determine the toxigenicity of Corynebacterium spp with zoonotic potential and an overview of human and animal infections. Mem Inst Oswaldo Cruz108:272–279
    [Google Scholar]
  10. De Zoysa A., Efstratiou A., George R. C., Jahkola M., Vuopio-Varkila J., Deshevoi S., Tseneva G., Rikushin Y.. 1995; Molecular epidemiology of Corynebacterium diphtheriae from northwestern Russia and surrounding countries studied by using ribotyping and pulsed-field gel electrophoresis. J Clin Microbiol33:1080–1083[PubMed]
    [Google Scholar]
  11. Efstratiou A., Maple P. A. C. 1994; Manual for the laboratory diagnosis of diphtheria in the European Region Copenhagen: expanded Programme on Immunization in the European Region of World Health Organization 1994. ICP/EPI 038(C)
  12. Engler K. H., Glushkevich T., Mazurova I. K., George R. C., Efstratiou A.. 1997; A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory. J Clin Microbiol35:495–498[PubMed]
    [Google Scholar]
  13. Farfour E., Leto J., Barritault M., Barberis C., Meyer J., Dauphin B., Le Guern A. S., Leflèche A., Badell E. et al. 2012; Evaluation of the Andromas matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli. J Clin Microbiol50:2702–2707 [CrossRef][PubMed]
    [Google Scholar]
  14. Finney D. J., Stevens W. L.. 1948; A table for the calculation of working probits and weights in probit analysis. Biometrika35:191–201[PubMed]
    [Google Scholar]
  15. Hall A. J., Cassiday P. K., Bernard K. A., Bolt F., Steigerwalt A. G., Bixler D., Pawloski L. C., Whitney A. M., Iwaki M. et al. 2010; Novel Corynebacterium diphtheriae in domestic cats. Emerg Infect Dis16:688–691 [CrossRef][PubMed]
    [Google Scholar]
  16. Hauser D., Popoff M. R., Kiredjian M., Boquet P., Bimet F.. 1993; Polymerase chain reaction assay for diagnosis of potentially toxinogenic Corynebacterium diphtheriae strains: correlation with ADP-ribosylation activity assay. J Clin Microbiol31:2720–2723[PubMed]
    [Google Scholar]
  17. Heggelund L., Gaustad P., Håvelsrud O. E., Blom J., Borgen L., Sundset A., Sørum H., Frøland S. S.. 2015; Corynebacterium pseudotuberculosis pneumonia in a veterinary student infected during laboratory work. Open Forum Infect Dis2:ofv053 [CrossRef][PubMed]
    [Google Scholar]
  18. Join-Lambert O. F., Ouache M., Canioni D., Beretti J. L., Blanche S., Berche P., Kayal S.. 2006; Corynebacterium pseudotuberculosis necrotizing lymphadenitis in a twelve-year-old patient. Pediatr Infect Dis J25:848–851 [CrossRef][PubMed]
    [Google Scholar]
  19. Khamis A., Raoult D., La Scola B.. 2004; rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol42:3925–3931 [CrossRef][PubMed]
    [Google Scholar]
  20. Konrad R., Berger A., Huber I., Boschert V., Hörmansdorfer S., Busch U., Hogardt M., Schubert S., Sing A.. 2010; Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill15:19699[PubMed]
    [Google Scholar]
  21. Leggett B. A., De Zoysa A., Abbott Y. E., Leonard N., Markey B., Efstratiou A.. 2010; Toxigenic Corynebacterium diphtheriae isolated from a wound in a horse. Vet Rec166:656–657 [CrossRef][PubMed]
    [Google Scholar]
  22. Lipsky B. A., Goldberger A. C., Tompkins L. S., Plorde J. J.. 1982; Infections caused by nondiphtheria corynebacteria. Rev Infect Dis4:1220–1235 [CrossRef][PubMed]
    [Google Scholar]
  23. Mancini F., Monaco M., Pataracchia M., von Hunolstein C., Pantosti A., Ciervo A.. 2012; Identification and molecular discrimination of toxigenic and nontoxigenic diphtheria Corynebacterium strains by combined real-time polymerase chain reaction assays. Diagn Microbiol Infect Dis73:111–120 [CrossRef][PubMed]
    [Google Scholar]
  24. Mel'nikov V. G., Kombarova S., Borisova O., Volozhantsev N. V, Verevkin V. V, Volkovoĭ K. I, Mazurova I. K.. 2004; Corynebacterium diphtheriae nontoxigenic strain carrying the gene of diphtheria toxin. Zh Mikrobiol Epidemiol Immunobiol1:3–7
    [Google Scholar]
  25. Mentasti M., Kese D., Echahidi F., Uldum S. A., Afshar B., David S., Mrazek J., De Mendonça R., Harrison T. G., Chalker V. J.. 2015; Design and validation of a qPCR assay for accurate detection and initial serogrouping of Legionella pneumophila in clinical specimens by the ESCMID Study Group for Legionella Infections (ESGLI). Eur J Clin Microbiol Infect Dis34:1387–1393 [CrossRef][PubMed]
    [Google Scholar]
  26. Mothershed E. A., Cassiday P. K., Pierson P., Mayer L. W., Popovic T.. 2002; Development of a real-time fluorescence PCR assay for rapid detection of the diphtheria toxin gene. J Clin Microbiol40:4713–4719 [CrossRef][PubMed]
    [Google Scholar]
  27. Murphy N. M., McLauchlin J., Ohai C., Grant K. A.. 2007; Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol120:110–119 [CrossRef]
    [Google Scholar]
  28. Nakao H., Pruckler J. M., Mazurova I. K., Narvskaia O. V., Glushkevich T., Marijevski V. F., Kravetz A. N., Fields B. S., Wachsmuth I. K., Popovic T.. 1996; Heterogeneity of diphtheria toxin gene, tox, and its regulatory element, dtxR, in Corynebacterium diphtheriae strains causing epidemic diphtheria in Russia and Ukraine. J Clin Microbiol34:1711–1716[PubMed]
    [Google Scholar]
  29. Neal S. E., Efstratiou A..DIPNET & International Diphtheria Reference Laboratories 2009; International external quality assurance for laboratory diagnosis of diphtheria. J Clin Microbiol47:4037–4042 [CrossRef][PubMed]
    [Google Scholar]
  30. Pallen M. J.. 1991; Rapid screening for toxigenic Corynebacterium diphtheriae by the polymerase chain reaction. J Clin Pathol44:1025–1026 [CrossRef][PubMed]
    [Google Scholar]
  31. Pallen M. J., Hay A. J., Puckey L. H., Efstratiou A.. 1994; Polymerase chain reaction for screening clinical isolates of corynebacteria for the production of diphtheria toxin. J Clin Pathol47:353–356 [CrossRef][PubMed]
    [Google Scholar]
  32. Pitcher D. G., Saunders N. A., Owen R. J.. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156 [CrossRef]
    [Google Scholar]
  33. Public Health England 2014; Diphtheria: laboratory isolates of C. diphtheriae and C. ulcerans. https://www.gov.uk/guidance/diphtheria-laboratory-isolates-of-c-diphtheriae-and-c-ulcerans
  34. Public Health England 2015; Public health control and management of diphtheria (in England and Wales) 2015 guidelines. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416108/Diphtheria_Guidelines_Final.pdf
  35. Rennie R. P., Brosnikoff C., Turnbull L., Reller L. B., Mirrett S., Janda W., Ristow K., Krilcich A.. 2008; Multicenter evaluation of the Vitek 2 anaerobe and Corynebacterium identification card. J Clin Microbiol46:2646–2651 [CrossRef][PubMed]
    [Google Scholar]
  36. Saunders N., Zambon M., Sharp I., Siddiqui R., Bermingham A., Ellis J., Vipond B., Sails A., Moran-Gilad J. et al. 2013; Guidance on the development and validation of diagnostic tests that depend on nucleic acid amplification and detection. J Clin Virol56:260–270 [CrossRef][PubMed]
    [Google Scholar]
  37. Schuhegger R., Lindermayer M., Kugler R., Heesemann J., Busch U., Sing A.. 2008; Detection of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains by a novel real-time PCR. J Clin Microbiol46:2822–2823 [CrossRef][PubMed]
    [Google Scholar]
  38. Sing A., Berger A., Schneider-Brachert W., Holzmann T., Reischl U.. 2011; Rapid detection and molecular differentiation of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains by Lightcycler PCR. J Clin Microbiol49:2485–2489 [CrossRef][PubMed]
    [Google Scholar]
  39. Zakikhany K., Neal S., Efstratiou A.. 2014; Emergence and molecular characterisation of non-toxigenic tox gene-bearing Corynebacterium diphtheriae biovar mitis in the United Kingdom, 2003–2012. Euro Surveill19:20819 [CrossRef][PubMed]
    [Google Scholar]
  40. Zasada A. A.. 2015; Corynebacterium diphtheriae infections currently and in the past. Przegl Epidemiol69:439–444[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000382
Loading
/content/journal/jmm/10.1099/jmm.0.000382
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error