1887

Abstract

In veterinary medicine, is associated with a range of mild to severe infections. The high density of livestock in intensive farming systems increases the risk of disease spread and hampers its control and measures of prevention, making one of the most important animal pathogens. Multiple-locus variable-number tandem repeat fingerprinting (MLVF) has been successfully applied to the characterization of livestock-associated meticillin-resistant (MRSA) ST398 but not to the characterization of a wide range of other animal isolates. The objective of the current study was to examine the effectiveness of MLVF for studying strains isolated from households, farms and exotic animals in three regions of Poland. MLVF, random amplification of polymorphic DNA (RAPD), typing and diagnostic microarrays were compared to determine the most suitable combination of methods for veterinary purposes. MLVF generated results consistent with host and geographic origins, reflecting population structures with a high concordance to typing results. MLVF has been proven to be a rapid, highly discriminatory and cost-effective method suitable for molecular typing in veterinary settings.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000378
2016-12-16
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/12/1494.html?itemId=/content/journal/jmm/10.1099/jmm.0.000378&mimeType=html&fmt=ahah

References

  1. Aanensen D. M., Feil E. J., Holden M. T., Dordel J., Yeats C. A., Fedosejev A., Goater R., Castillo-Ramírez S., Corander J. et al. 2016; Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. MBio7:e00444-16 [CrossRef][PubMed]
    [Google Scholar]
  2. Aires-de-Sousa M., Boye K., de Lencastre H., Deplano A., Enright M. C., Etienne J., Friedrich A., Harmsen D., Holmes A. et al. 2006; High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol44:619–621 [CrossRef][PubMed]
    [Google Scholar]
  3. Carriço J. A., Silva-Costa C., Melo-Cristino J., Pinto F. R., de Lencastre H., Almeida J. S., Ramirez M.. 2006; Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant Streptococcus pyogenes. J Clin Microbiol44:2524–2532 [CrossRef][PubMed]
    [Google Scholar]
  4. Cuteri V., Mazzolla R., Valente F., Merletti L., Valente C.. 2002; Application of pulsed-field gel electrophoresis (PFGE) to methicillin-resistant strains of Staphylococcus aureus from humans and domestic animals. Infez Med Riv Period Eziologia Epidemiol Diagn Clin E Ter Delle Patol Infett10:25–30
    [Google Scholar]
  5. Fitzgerald J. R.. 2012; Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol20:192–198 [CrossRef][PubMed]
    [Google Scholar]
  6. Glasner C., Sabat A. J., Chlebowicz M. A., Vanderhaeghen W., Fetsch A., Guerra B., Huber H., Stephan R., Torres C. et al. 2013; High-resolution typing by MLVF unveils extensive heterogeneity of European livestock-associated methicillin-resistant Staphylococcus aureus isolates with the sequence type 398. Int J Med Microbiol303:124–127 [CrossRef][PubMed]
    [Google Scholar]
  7. Grundmann H., Hori S., Tanner G.. 2001; Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol39:4190–4192 [CrossRef][PubMed]
    [Google Scholar]
  8. Grundmann H., Aanensen D. M., van den Wijngaard C. C., Spratt B. G., Harmsen D., Friedrich A. W.. European Staphylococcal Reference Laboratory Working Group 2010; Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med7:e1000215 [CrossRef][PubMed]
    [Google Scholar]
  9. Grundmann H., Schouls L. M., Aanensen D. M., Pluister G. N., Tami A., Chlebowicz M., Glasner C., Sabat A. J., Weist K. et al. 2014; The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull19:20987 [CrossRef][PubMed]
    [Google Scholar]
  10. Hunter P. R., Gaston M. A.. 1988; Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol26:2465–2466[PubMed]
    [Google Scholar]
  11. Huson D. H., Bryant D.. 2006; Application of phylogenetic networks in evolutionary studies. Mol Biol Evol23:254–267 [CrossRef][PubMed]
    [Google Scholar]
  12. Ichiyama S., Ohta M., Shimokata K., Kato N., Takeuchi J.. 1991; Genomic DNA fingerprinting by pulsed-field gel electrophoresis as an epidemiological marker for study of nosocomial infections caused by methicillin-resistant Staphylococcus aureus. J Clin Microbiol29:2690–2695[PubMed]
    [Google Scholar]
  13. Karynski M., Sabat A. J., Empel J., Hryniewicz W.. 2008; Molecular surveillance of methicillin-resistant Staphylococcus aureus by multiple-locus variable number tandem repeat fingerprinting (formerly multiple-locus variable number tandem repeat analysis) and spa typing in a hierarchic approach. Diagn Microbiol Infect Dis62:255–262 [CrossRef][PubMed]
    [Google Scholar]
  14. Leclercq R., Cantón R., Brown D. F., Giske C. G., Heisig P., MacGowan A. P., Mouton J. W., Nordmann P., Rodloff A. C. et al. 2013; EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect19:141–160 [CrossRef][PubMed]
    [Google Scholar]
  15. Loncaric I., Künzel F., Licka T., Simhofer H., Spergser J., Rosengarten R.. 2014; Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet Microbiol168:381–387 [CrossRef][PubMed]
    [Google Scholar]
  16. Luczak-Kadlubowska A., Sabat A., Tambic-Andrasevic A., Payerl-Pal M., Krzyszton-Russjan J., Hryniewicz W.. 2008; Usefulness of multiple-locus VNTR fingerprinting in detection of clonality of community- and hospital-acquired Staphylococcus aureus isolates. Antonie Van Leeuwenhoek94:543–553 [CrossRef][PubMed]
    [Google Scholar]
  17. Monecke S., Slickers P., Ehricht R.. 2008; Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol53:237–251 [CrossRef][PubMed]
    [Google Scholar]
  18. Monecke S., Ehricht R., Slickers P., Wiese N., Jonas D.. 2009; Intra-strain variability of methicillin-resistant Staphylococcus aureus strains ST228-MRSA-I and ST5-MRSA-II. Eur J Clin Microbiol Infect Dis28:1383–1390 [CrossRef][PubMed]
    [Google Scholar]
  19. Price J., Gordon N. C., Crook D., Llewelyn M., Paul J.. 2013; The usefulness of whole genome sequencing in the management of Staphylococcus aureus infections. Clin Microbiol Infect19:784–789 [CrossRef][PubMed]
    [Google Scholar]
  20. Sabat A., Krzyszton-Russjan J., Strzalka W., Filipek R., Kosowska K., Hryniewicz W., Travis J., Potempa J.. 2003; New method for typing Staphylococcus aureus strains: multiple-locus variable-number tandem repeat analysis of polymorphism and genetic relationships of clinical isolates. J Clin Microbiol41:1801–1804 [CrossRef][PubMed]
    [Google Scholar]
  21. Sabat A., Malachowa N., Miedzobrodzki J., Hryniewicz W.. 2006; Comparison of PCR-based methods for typing Staphylococcus aureus isolates. J Clin Microbiol44:3804–3807 [CrossRef][PubMed]
    [Google Scholar]
  22. Sabat A. J., Budimir A., Nashev D., Sá-Leão R., van Dijl J. M., Laurent F., Grundmann H., Friedrich A. W.. ESCMID Study Group of Epidemiological Markers (ESGEM) 2013; Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull18:20380
    [Google Scholar]
  23. Saunders N. A., Holmes A.. 2014; Multilocus sequence typing (MLST) of Staphylococcus aureus. Methods Mol Biol Clifton NJ1085:113–130
    [Google Scholar]
  24. Schulte B., Bierbaum G., Pohl K., Goerke C., Wolz C.. 2013; Diversification of clonal complex 5 methicillin-resistant Staphylococcus aureus strains (Rhine-Hesse clone) within Germany. J Clin Microbiol51:212–216 [CrossRef][PubMed]
    [Google Scholar]
  25. Tambic A., Power E. G., Talsania H., Anthony R. M., French G. L.. 1997; Analysis of an outbreak of non-phage-typeable methicillin-resistant Staphylococcus aureus by using a randomly amplified polymorphic DNA assay. J Clin Microbiol35:3092–3097[PubMed]
    [Google Scholar]
  26. Ugolotti E., Larghero P., Vanni I., Bandettini R., Tripodi G., Melioli G., Di Marco E., Raso A., Biassoni R.. 2016; Whole-genome sequencing as standard practice for the analysis of clonality in outbreaks of meticillin-resistant Staphylococcus aureus in a paediatric setting. J Hosp Infect93:375–381 [CrossRef][PubMed]
    [Google Scholar]
  27. Wettstein Rosenkranz K., Rothenanger E., Brodard I., Collaud A., Overesch G., Bigler B., Marschall J., Perreten V.. 2014; Nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) among Swiss veterinary health care providers: detection of livestock- and healthcare-associated clones. Schweiz Arch Tierheilkd156:317–325 [CrossRef][PubMed]
    [Google Scholar]
  28. Yugueros J., Temprano A., Sánchez M., Luengo J. M., Naharro G.. 2001; Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism of gap Gene. J Clin Microbiol39:3693–3695 [CrossRef][PubMed]
    [Google Scholar]
  29. Zastempowska E., Orczykowska-Kotyna M., Lassa H.. 2014; Isolation of nuc mutant isolates of Staphylococcus aureus from bovine clinical mastitis. Vet J200:446–448 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000378
Loading
/content/journal/jmm/10.1099/jmm.0.000378
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error