1887

Abstract

Emerging antibiotic resistance in the oropharyngeal microbiota, of which is a prominent species, represents a challenge for treating paediatric populations. In this study, we investigated the role of as a reservoir for antibiotic resistance genes (ARG) in the oral microbiota by analysing 95 isolates from 22 healthy infants (2–16 months of age). MICs of penicillin G, amoxicillin, erythromycin, tetracycline, doxycycline and streptomycin were determined. ARG profiles were assessed in a subset of 21 strains by next-generation sequencing of genomes, followed by searches of assembled reads against the Comprehensive Antibiotic Resistance Database. Strains resistant to erythromycin, penicillins and tetracyclines were isolated from 83.3, 33.3 and 16.6 %, respectively, of infants aged 2 to 8 months with no prior antibiotic treatment. These percentages were100.0, 66.6 and 50.0 %, by 13 to 16 months of age. ARG or polymorphisms associated with antibiotic resistance were the most prevalent and involved genes for macrolide efflux (, and ), ribosomal protection [(), () and ()] and β-lactamase-like proteins. Phylogenetically related strains showing multidrug-resistant phenotypes harboured multidrug efflux ARG. Polymorphic genes associated with antibiotic resistance to drugs affecting DNA replication, folate synthesis, RNA/protein synthesis and regulators of antibiotic stress responses were detected. These data imply that strains established during maturation of the oral microbiota harbour a diverse array of functional ARG, even in the absence of antibiotic selective pressures, highlighting a potential role for this species in shaping antibiotic susceptibility profiles of oropharyngeal communities.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000377
2016-12-16
2020-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/12/1456.html?itemId=/content/journal/jmm/10.1099/jmm.0.000377&mimeType=html&fmt=ahah

References

  1. Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E.. 2005; Defining the normal bacterial flora of the oral cavity. J Clin Microbiol43:5721–5732 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Andersson D. I., Hughes D.. 2011; Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev35:901–911 [CrossRef][PubMed]
    [Google Scholar]
  4. Bancescu G., Dumitriu S., Bancescu A., Defta C., Pana M., Ionescu D., Alecu S., Zamfirescu M.. 2004; Susceptibility testing of Streptococcus mitis group isolates. Indian J Med Res199:257–261
    [Google Scholar]
  5. Baquero F., Tedim A. P., Coque T. M.. 2013; Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol4:15 [CrossRef][PubMed]
    [Google Scholar]
  6. Brenciani A., Bacciaglia A., Vecchi M., Vitali L. A., Varaldo P. E., Giovanetti E.. 2007; Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother51:1209–1216 [CrossRef][PubMed]
    [Google Scholar]
  7. Brenciani A., Tiberi E., Tili E., Mingoia M., Palmieri C., Varaldo P. E., Giovanetti E.. 2014; Genetic determinants and elements associated with antibiotic resistance in viridans group streptococci. J Antimicrob Chemother69:1197–1204 [CrossRef][PubMed]
    [Google Scholar]
  8. Bryskier A.. 2002; Viridans group streptococci: a reservoir of resistant bacteria in oral cavities. Clin Microbiol Infect8:65–69 [CrossRef][PubMed]
    [Google Scholar]
  9. Cerdá Zolezzi P., Laplana L. M., Calvo C. R., Cepero P. G., Erazo M. C., Gómez-Lus R.. 2004; Molecular basis of resistance to macrolides and other antibiotics in commensal viridans group streptococci and Gemella spp. and transfer of resistance genes to Streptococcus pneumoniae. Antimicrob Agents Chemother48:3462–3467 [CrossRef][PubMed]
    [Google Scholar]
  10. Chaffanel F., Charron-Bourgoin F., Libante V., Leblond-Bourget N., Payot S.. 2015; Resistance genes and genetic elements associated with antibiotic resistance in clinical and commensal isolates of Streptococcus salivarius. Appl Environ Microbiol81:4155–4163 [CrossRef][PubMed]
    [Google Scholar]
  11. CLSI 2015; CLSI Antimicrobial Susceptibility Testing (AST) Recommendations M100-S25 Implementation Checklist. Wayne, PA: CLSI
  12. Cochetti I., Tili E., Vecchi M., Manzin A., Mingoia M., Varaldo P. E., Montanari M. P.. 2007; New Tn916-related elements causing erm(B)-mediated erythromycin resistance in tetracycline-susceptible pneumococci. J Antimicrob Chemother60:127–131 [CrossRef][PubMed]
    [Google Scholar]
  13. Del Grosso M., Iannelli F., Messina C., Santagati M., Petrosillo N., Stefani S., Pozzi G., Pantosti A.. 2002; Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. J Clin Microbiol40:774–778 [CrossRef][PubMed]
    [Google Scholar]
  14. Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L.. 2007; Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  15. Delorme C., Poyart C., Ehrlich S. D., Renault P.. 2007; Extent of horizontal gene transfer in evolution of streptococci of the salivarius group. J Bacteriol189:1330–1341 [CrossRef][PubMed]
    [Google Scholar]
  16. Doern G. V., Ferraro M. J., Brueggemann A. B., Ruoff K. L.. 1996; Emergence of high rates of antimicrobial resistance among viridans group streptococci in the United States. Antimicrob Agents Chemother40:891–894[PubMed]
    [Google Scholar]
  17. Doern C. D., Burnham C. A.. 2010; It's not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol48:3829–3835 [CrossRef][PubMed]
    [Google Scholar]
  18. Dowson C. G., Coffey T. J., Kell C., Whiley R. A.. 1993; Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol9:635–643 [CrossRef][PubMed]
    [Google Scholar]
  19. Garnier F., Gerbaud G., Courvalin P., Galimand M.. 1997; Identification of clinically relevant viridans group streptococci to the species level by PCR. J Clin Microbiol35:2337–2341[PubMed]
    [Google Scholar]
  20. Giovanetti E., Brenciani A., Morroni G., Tiberi E., Pasquaroli S., Mingoia M., Varaldo P. E.. 2014; Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species. Front Microbiol5:746 [CrossRef][PubMed]
    [Google Scholar]
  21. Gueimonde M., Salminen S., Isolauri E.. 2006; Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol Med Microbiol48:21–25 [CrossRef][PubMed]
    [Google Scholar]
  22. Hakenbeck R., Brückner R., Denapaite D., Maurer P.. 2012; Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol7:395–410 [CrossRef][PubMed]
    [Google Scholar]
  23. Hannan S., Ready D., Jasni A. S., Rogers M., Pratten J., Roberts A. P.. 2010; Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol59:345–349 [CrossRef][PubMed]
    [Google Scholar]
  24. Hanslik T., Hartig C., Jurand C., Armand-Lefevre L., Jubault V., Rouveix E., Dubourg O., Prinseau J., Baglin A. et al. 2003; Clinical significance of tolerant strains of streptococci in adults with infective endocarditis. Clin Microbiol Infect9:852–857 [CrossRef][PubMed]
    [Google Scholar]
  25. Horodniceanu T., Buu-Hoï A., Delbos F., Bieth G.. 1982; High-level aminoglycoside resistance in group A, B, G, D (Streptococcus bovis), and viridans streptococci. Antimicrob Agents Chemother21:176–179 [CrossRef][PubMed]
    [Google Scholar]
  26. Human Microbiome Project Consortium 2012; Structure, function and diversity of the healthy human microbiome. Nature486:207–214 [CrossRef][PubMed]
    [Google Scholar]
  27. Kobayashi N., Nishino K., Yamaguchi A.. 2001; Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol183:5639–5644 [CrossRef][PubMed]
    [Google Scholar]
  28. Langmead B., Salzberg S. L.. 2012; Fast gapped-read alignment with Bowtie 2. Nat Methods9:357–359 [CrossRef][PubMed]
    [Google Scholar]
  29. Lemon K. P., Klepac-Ceraj V., Schiffer H. K., Brodie E. L., Lynch S. V., Kolter R.. 2010; Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio1:e00129-10 [CrossRef][PubMed]
    [Google Scholar]
  30. Li X. Z., Nikaido H.. 2004; Efflux-mediated drug resistance in bacteria. Drugs64:159–204 [CrossRef][PubMed]
    [Google Scholar]
  31. Livermore D. M.. 1995; Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev8:557–584[PubMed]
    [Google Scholar]
  32. Malhotra-Kumar S., Lammens C., Martel A., Mallentjer C., Chapelle S., Verhoeven J., Wijdooghe M., Haesebrouck F., Goossens H.. 2004; Oropharyngeal carriage of macrolide-resistant viridans group streptococci: a prevalence study among healthy adults in Belgium. J Antimicrob Chemother53:271–276 [CrossRef][PubMed]
    [Google Scholar]
  33. Malhotra-Kumar S., Lammens C., Piessens J., Goossens H.. 2005; Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents Chemother49:4798–4800 [CrossRef][PubMed]
    [Google Scholar]
  34. McArthur A. G., Waglechner N., Nizam F., Yan A., Azad M. A., Baylay A. J., Bhullar K., Canova M. J., De Pascale G. et al. 2013; The comprehensive antibiotic resistance database. Antimicrob Agents Chemother57:3348–3357 [CrossRef][PubMed]
    [Google Scholar]
  35. Nakajima T., Nakanishi S., Mason C., Montgomery J., Leggett P., Matsuda M., Coulter W. A., Millar B. C., Goldsmith C. E. et al. 2013; Population structure and characterization of viridans group streptococci (VGS) isolated from the upper respiratory tract of patients in the community. Ulster Med J82:164–168[PubMed]
    [Google Scholar]
  36. Ogawa A., Furukawa S., Fujita S., Mitobe J., Kawarai T., Narisawa N., Sekizuka T., Kuroda M., Ochiai K. et al. 2011; Inhibition of Streptococcus mutans biofilm formation by Streptococcus salivarius FruA. Appl Environ Microbiol77:1572–1580 [CrossRef][PubMed]
    [Google Scholar]
  37. Piddock L. J.. 2006; Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol4:629–636 [CrossRef][PubMed]
    [Google Scholar]
  38. Potgieter E., Carmichael M., Koornhof H. J., Chalkley L. J.. 1992; In vitro antimicrobial susceptibility of viridans streptococci isolated from blood cultures. Eur J Clin Microbiol Infect Dis11:543–546 [CrossRef][PubMed]
    [Google Scholar]
  39. Ready D., Lancaster H., Qureshi F., Bedi R., Mullany P., Wilson M.. 2004; Effect of amoxicillin use on oral microbiota in young children. Antimicrob Agents Chemother48:2883–2887 [CrossRef][PubMed]
    [Google Scholar]
  40. Roberts M. C.. 2011; Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Front Microbiol2:40 [CrossRef][PubMed]
    [Google Scholar]
  41. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  42. Seppälä H., Haanperä M., Al-Juhaish M., Järvinen H., Jalava J., Huovinen P.. 2003; Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J Antimicrob Chemother52:636–644 [CrossRef][PubMed]
    [Google Scholar]
  43. Shirokawa T., Nakajima J., Hirose K., Suzuki H., Nagaoka S., Suzuki M.. 2014; Spontaneous meningitis due to Streptococcus salivarius subsp. salivarius: cross-reaction in an assay with a rapid diagnostic kit that detected Streptococcus pneumoniae antigens. Intern Med53:279–282 [CrossRef][PubMed]
    [Google Scholar]
  44. Sibold C., Henrichsen J., König A., Martin C., Chalkley L., Hakenbeck R.. 1994; Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol Microbiol12:1013–1023 [CrossRef][PubMed]
    [Google Scholar]
  45. Stipp R. N., Boisvert H., Smith D. J., Höfling J. F., Duncan M. J., Mattos-Graner R. O.. 2013; CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans. PLoS One8:e58271 [CrossRef][PubMed]
    [Google Scholar]
  46. Suzuki S., Horinouchi T., Furusawa C.. 2014; Prediction of antibiotic resistance by gene expression profiles. Nat Commun5:5792 [CrossRef][PubMed]
    [Google Scholar]
  47. Suzuki S., Horinouchi T., Furusawa C.. 2015; Suppression of antibiotic resistance acquisition by combined use of antibiotics. J Biosci Bioeng120:467–469 [CrossRef][PubMed]
    [Google Scholar]
  48. Tagg J. R., Pybus V., Phillips L. V., Fiddes T. M.. 1983; Application of inhibitor typing in a study of the transmission and retention in the human mouth of the bacterium Streptococcus salivarius. Arch Oral Biol28:911–915 [CrossRef][PubMed]
    [Google Scholar]
  49. Tanaka S., Kobayashi T., Songjinda P., Tateyama A., Tsubouchi M., Kiyohara C., Shirakawa T., Sonomoto K., Nakayama J.. 2009; Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol56:80–87 [CrossRef][PubMed]
    [Google Scholar]
  50. Tappuni A. R., Challacombe S. J.. 1993; Distribution and isolation frequency of eight streptococcal species in saliva from predentate and dentate children and adults. J Dent Res72:31–36 [CrossRef][PubMed]
    [Google Scholar]
  51. Teng L. J., Hsueh P. R., Chen Y. C., Ho S. W., Luh K. T.. 1998; Antimicrobial susceptibility of viridans group streptococci in Taiwan with an emphasis on the high rates of resistance to penicillin and macrolides in Streptococcus oralis. J Antimicrob Chemother41:621–627 [CrossRef][PubMed]
    [Google Scholar]
  52. Toth M., Antunes N. T., Stewart N. K., Frase H., Bhattacharya M., Smith C. A., Vakulenko S. B.. 2016; Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol12:9–14 [CrossRef][PubMed]
    [Google Scholar]
  53. Van den Bogert B., Boekhorst J., Herrmann R., Smid E. J., Zoetendal E. G., Kleerebezem M.. 2013; Comparative genomics analysis of Streptococcus isolates from the human small intestine reveals their adaptation to a highly dynamic ecosystem. PLoS One8:e83418 [CrossRef][PubMed]
    [Google Scholar]
  54. Walker C. B., Godowski K. C., Borden L., Lennon J., Nangó S., Stone C., Garrett S.. 2000; The effects of sustained release doxycycline on the anaerobic flora and antibiotic-resistant patterns in subgingival plaqueand saliva. J Periodontol71:768–774 [CrossRef][PubMed]
    [Google Scholar]
  55. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  56. Wescombe P. A., Upton M., Dierksen K. P., Ragland N. L., Sivabalan S., Wirawan R. E., Inglis M. A., Moore C. J., Walker G. V. et al. 2006; Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol72:1459–1525 [CrossRef][PubMed]
    [Google Scholar]
  57. Wilson M., Martin R., Walk S. T., Young C., Grossman S., McKean E. L., Aronoff D. M.. 2012; Clinical and laboratory features of Streptococcus salivarius meningitis: a case report and literature review. Clin Med Res10:15–25 [CrossRef][PubMed]
    [Google Scholar]
  58. Yi H., Jin L.. 2013; Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids Res41:e75 [CrossRef]
    [Google Scholar]
  59. Zerbino D. R., Birney E.. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000377
Loading
/content/journal/jmm/10.1099/jmm.0.000377
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error