1887

Abstract

Coagulase-negative staphylococci (CoNS) are opportunistic pathogens that particularly cause infections in patients with implanted medical devices. The present research was performed to study the virulence potential of 53 clinical isolates of , , , , and All clinical strains were clonally unrelated. Isolates carried genes encoding resistance to β-lactam () (15 %), aminoglycoside [(11 %), (15 %), (19 %)] and macrolide, lincosamide and streptogramin B (MLS) [(A) (4 %), (B) (13 %), (C) (41 %), (A) (11 %)] antibiotics. CoNS isolates (64 %) were able to form biofilms. Confocal laser scanning microscopy revealed that these biofilms formed a threedimensional structure composed mainly of living cells. All biofilm-positive strains carried the operon. studies demonstrated that a combination treatment with tigecycline and rifampicin was more effective against biofilms than one with ciprofloxacin and rifampicin. The minimum biofilm eradication concentration values were 0.062–0.5 µg ml for tigecycline/rifampicin and 0.250–2 µg ml for ciprofloxacin/rifampicin. All CoNS strains adhered to the human epithelial cell line HeLa, and more than half of the isolates were able to invade the HeLa cells, although most invaded relatively poorly. The virulence of CoNS is also attributed to their cytotoxic effects on HeLa cells. Incubation of HeLa cells with culture supernatant of the CoNS isolates resulted in cell death. The results indicate that the pathogenicity of , , , and is multi-factorial, involving the ability of these bacteria to adhere to human epithelial cells, form biofilms and invade and destroy human cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000372
2016-12-16
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/12/1405.html?itemId=/content/journal/jmm/10.1099/jmm.0.000372&mimeType=html&fmt=ahah

References

  1. Allignet J., Aubert S., Dyke K. G., El Solh N.. 2001; Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a gene encoding an autolysin-binding fibronectin and the ica operon involved in biofilm formation. Infect Immun69:712–718 [CrossRef][PubMed]
    [Google Scholar]
  2. Almeida R. A., Oliver S. P.. 2001; Interaction of coagulase-negative Staphylococcus species with bovine mammary epithelial cells. Microb Pathog31:205–212 [CrossRef][PubMed]
    [Google Scholar]
  3. Anaya-López J. L., Contreras-Guzmán O. E., Cárabez-Trejo A., Baizabal-Aguirre V. M., López-Meza J. E., Valdez-Alarcón J. J., Ochoa-Zarzosa A.. 2006; Invasive potential of bacterial isolates associated with subclinical bovine mastitis. Res Vet Sci81:358–361 [CrossRef][PubMed]
    [Google Scholar]
  4. Ardic N., Sareyyupoglu B., Ozyurt M., Haznedaroglu T., Ilga U.. 2006; Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci. Microbiol Res161:49–54 [CrossRef]
    [Google Scholar]
  5. Aybar Y., Ozaras R., Besirli K., Engin E., Karabulut E., Salihoglu T., Mete B., Tabak F., Mert A. et al. 2012; Efficacy of tigecycline and vancomycin in experimental catheter-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. Int J Antimicrob Agents39:338–342 [CrossRef][PubMed]
    [Google Scholar]
  6. Berdal J. E., Skråmm I., Mowinckel P., Gulbrandsen P., Bjørnholt J.. 2005; Use of rifampicin and ciprofloxacin combination therapy after surgical debridement in the treatment of early manifestation prosthetic joint infections. Clin Microbiol Infect11:843–845 [CrossRef][PubMed]
    [Google Scholar]
  7. Cerca F., França A., Pérez-Cabezas B., Carvalhais V., Ribeiro A., Azeredo J., Pier G., Cerca N., Vilanova M.. 2014; Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. J Med Microbiol63:1274–1283 [CrossRef][PubMed]
    [Google Scholar]
  8. Chokr A., Watier D., Eleaume H., Pangon B., Ghnassia J. C., Mack D., Jabbouri S.. 2006; Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol296:381–388 [CrossRef][PubMed]
    [Google Scholar]
  9. Coiffier G., Albert J. D., Arvieux C., Guggenbuhl P.. 2013; Optimizing combination rifampin therapy for staphylococcal osteoarticular infections. Joint Bone Spine80:11–17 [CrossRef][PubMed]
    [Google Scholar]
  10. Cui B., Smooker P. M., Rouch D. A., Daley A. J., Deighton M. A.. 2013; Differences between two clinical Staphylococcus capitis subspecies as revealed by biofilm, antibiotic resistance, and pulsed-field gel electrophoresis profiling. J Clin Microbiol51:9–14 [CrossRef][PubMed]
    [Google Scholar]
  11. Donvito B., Etienne J., Greenland T., Mouren C., Delorme V., Vandenesch F.. 1997; Distribution of the synergistic haemolysin genes hld and slush with respect to agr in human staphylococci. FEMS Microbiol Lett151:139–144 [CrossRef]
    [Google Scholar]
  12. Edwards A. M., Potts J. R., Josefsson E., Massey R. C.. 2010; Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLoS Pathog6:e1000964 [CrossRef][PubMed]
    [Google Scholar]
  13. Fey P. D.. 2010; Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections?. Curr Opin Microbiol13:610–615 [CrossRef][PubMed]
    [Google Scholar]
  14. Frank K. L., Del Pozo J. L., Patel R.. 2008; From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev21:111–133 [CrossRef][PubMed]
    [Google Scholar]
  15. Fredheim E. G., Klingenberg C., Rohde H., Frankenberger S., Gaustad P., Flaegstad T., Sollid J. E.. 2009; Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol47:1172–1180 [CrossRef][PubMed]
    [Google Scholar]
  16. Garzoni C., Kelley W. L.. 2009; Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol17:59–65 [CrossRef][PubMed]
    [Google Scholar]
  17. Geha D. J., Uhl J. R., Gustaferro C. A., Persing D. H.. 1994; Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol32:1768–1772[PubMed]
    [Google Scholar]
  18. Greco-Stewart V. S., Ali H., Kumaran D., Kalab M., Rood I. G., de Korte D., Ramírez-Arcos S.. 2013; Biofilm formation by Staphylococcus capitis strains isolated from contaminated platelet concentrates. J Med Microbiol62:1051–1059 [CrossRef][PubMed]
    [Google Scholar]
  19. Heldman A. W., Hartert T. V., Ray S. C., Daoud E. G., Kowalski T. E., Pompili V. J., Sisson S. D., Tidmore W. C., vom Eigen K. A. et al. 1996; Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am J Med101:68–76 [CrossRef][PubMed]
    [Google Scholar]
  20. Heydorn A., Givskov M., Hentzer M., Ersbøll B. K., Sternberg C., Nielsen A. T., Molin S.. 2000; Quantification of biofilm structures by the novel computer program comstat. Microbiology146:2395–2407 [CrossRef]
    [Google Scholar]
  21. Hirschhausen N., Schlesier T., Schmidt M. A., Götz F., Peters G., Heilmann C.. 2010; A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol12:1746–1764 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim J. H., Kim C. H., Hacker J., Ziebuhr W., Lee B. K., Cho S. H.. 2008; Molecular characterization of regulatory genes associated with biofilm variation in a Staphylococcus aureus strain. J Microbiol Biotechnol18:28–34[PubMed]
    [Google Scholar]
  23. Koksal F., Yasar H., Samasti M.. 2009; Antibiotic resistance patterns of coagulase-negative staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiol Res164:404–410 [CrossRef][PubMed]
    [Google Scholar]
  24. Krzymińska S., Szczuka E., Kaznowski A.. 2012; Staphylococcus haemolyticus strains target mitochondria and induce caspase-dependent apoptosis of macrophages. Antonie Van Leeuwenhoek102:611–620 [CrossRef][PubMed]
    [Google Scholar]
  25. Krzymińska S., Szczuka E., Dudzińska K., Kaznowski A.. 2015; Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens. Antonie Van Leeuwenhoek107:857–868 [CrossRef][PubMed]
    [Google Scholar]
  26. Le K. Y., Dastgheyb S., Ho T. V., Otto M.. 2014; Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol4:167 [CrossRef][PubMed]
    [Google Scholar]
  27. Le Bouter A., Leclercq R., Cattoir V.. 2011; Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates. Int J Antimicrob Agents37:118–123 [CrossRef][PubMed]
    [Google Scholar]
  28. Mack D., Rohde H., Harris L. G., Davies A. P., Horstkotte M. A., Knobloch J. K.-M.. 2006; Biofilm formation in medical device-related infection. Inter J Art Organs29:343–359
    [Google Scholar]
  29. Moskowitz S. M., Foster J. M., Emerson J., Burns J. L.. 2004; Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol42:1915–1922 [CrossRef][PubMed]
    [Google Scholar]
  30. Osman K. M., Abd El-Razik K. A., Marie H. S., Arafa A.. 2015; Relevance of biofilm formation and virulence of different species of coagulase-negative staphylococci to public health. Eur J Clin Microbiol Infect Dis34:2009–2016 [CrossRef][PubMed]
    [Google Scholar]
  31. Otto M.. 2004; Virulence factors of the coagulase-negative staphylococci. Front Biosci9:841–863 [CrossRef][PubMed]
    [Google Scholar]
  32. Otto M.. 2012; Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol34:201–214 [CrossRef][PubMed]
    [Google Scholar]
  33. Pereira E. M., Teixeira C. A., Alvarenga A. L., Schuenck R. P., Giambiagi-Demarval M., Holandino C., Mattos-Guaraldi A. L., dos Santos K. R.. 2012; A brazilian lineage of Staphylococcus lugdunensis presenting rough colony morphology may adhere to and invade lung epithelial cells. J Med Microbiol61:463–469 [CrossRef][PubMed]
    [Google Scholar]
  34. Piette A., Verschraegen G.. 2009; Role of coagulase-negative staphylococci in human disease. Vet Microbiol134:45–54 [CrossRef][PubMed]
    [Google Scholar]
  35. Qin Z., Yang X., Yang L., Jiang J., Ou Y., Molin S., Qu D.. 2007; Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol56:83–93 [CrossRef][PubMed]
    [Google Scholar]
  36. Qu Y., Daley A. J., Istivan T. S., Garland S. M., Deighton M. A.. 2010; Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation. Ann Clin Microbiol Antimicrob9:16 [CrossRef]
    [Google Scholar]
  37. Rasigade J. P., Raulin O., Picaud J. C., Tellini C., Bes M., Grando J., Ben Saïd M., Claris O., Etienne J. et al. 2007; Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care Neonates. PLoS One7:e31548 [CrossRef]
    [Google Scholar]
  38. Rodhe H., Mack D., Christner M., Burdelski C., Franke G., Knobloch J. K.-M.. 2006; Pathogenesis of staphylococcal device-related infections: from basic science to new diagnostic, therapeutic and prophylactic approaches. Rev Med Microbiol17:45–54
    [Google Scholar]
  39. Ross T. L., Fuss E. P., Harrington S. M., Cai M., Perl T. M., Merz W. G.. 2005; Methicillin-resistant Staphylococcus caprae in a neonatal intensive care unit. J Clin Microbiol43:363–367 [CrossRef][PubMed]
    [Google Scholar]
  40. Różalska M., Szewczyk E. M.. 2008; Staphylococcus cohnii hemolysins – isolation, purification and properties. Folia Microbiol53:521–526
    [Google Scholar]
  41. Rumi M. V., Huguet M. J., Bentancor A. B., Gentilini E. R.. 2013; The icaA gene in staphylococci from bovine mastitis. J Infect Dev Ctries7:556–560 [CrossRef][PubMed]
    [Google Scholar]
  42. Shi S., Zhang X.. 2012; Interaction of Staphylococcus aureus with osteoblasts. Exp Ther Med3:367–370 [CrossRef][PubMed]
    [Google Scholar]
  43. Simojoki H., Hyvönen P., Plumed Ferrer C., Taponen S., Pyörälä S.. 2012; Is the biofilm formation and slime producing ability of coagulase-negative staphylococci associated with the persistence and severity of intramammary infection?. Vet Microbiol158:344–352 [CrossRef][PubMed]
    [Google Scholar]
  44. Szabados F., Marlinghaus L., Korte M., Neumann S., Kaase M., Gatermann S. G.. 2011; Fbl is not involved in the invasion of eukaryotic epithelial and endothelial cells by Staphylococcus lugdunensis. FEMS Microbiol Lett324:48–55 [CrossRef][PubMed]
    [Google Scholar]
  45. Szczuka E., Kaznowski A.. 2014; Antimicrobial activity of tigecycline alone or in combination with rifampin against Staphylococcus epidermidis in biofilm. Folia Microbiol59:283–288 [CrossRef]
    [Google Scholar]
  46. Szczuka E., Grabska K., Kaznowski A.. 2015; In vitro activity of Rifampicin combined with Daptomycin or Tigecycline on Staphylococcus haemolyticus biofilms. Curr Microbiol71:184–189 [CrossRef][PubMed]
    [Google Scholar]
  47. Valour F., Trouillet-Assant S., Rasigade J. P., Lustig S., Chanard E., Meugnier H., Tigaud S., Vandenesch F., Etienne J. et al. 2013; Staphylococcus epidermidis in orthopedic device infections: the role of bacterial internalization in human osteoblasts and biofilm formation. PLoS One8:e67240 [CrossRef][PubMed]
    [Google Scholar]
  48. Versalovic J., Koeuth T., Lupski J. R.. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res19:6823–6831 [CrossRef][PubMed]
    [Google Scholar]
  49. Yin L. Y., Lazzarini L., Li F., Stevens C. M., Calhoun J. H.. 2005; Comparative evaluation of tigecycline and vancomycin, with and without rifampicin, in the treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis in a rabbit model. J Antimicrob Chemother55:995–1002 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000372
Loading
/content/journal/jmm/10.1099/jmm.0.000372
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error