1887

Abstract

During the 2014/15 winter season, a newly emergent GII.P17-GII.17 variant overwhelmed currently dominant GII.4 viruses, causing outbreaks of acute gastroenteritis in China and Japan. In Nanjing area, this novel GII.17 variant was first identified in a sporadic case of acute gastroenteritis in July 2013, 18 months ahead of reports from other parts of China. In this study, epidemiological features and genotyping of noroviruses from 2013 to 2015 were depicted. Twenty-eight local GII.17 sequences of capsid N-terminus originating from July 2013 to August 2015 were aligned, among which complete genome of seven strains obtained from two outbreaks and five sporadic cases was extensively characterized. The differences of local GII.17 variants led to at least two clusters, with strains from 2013/14 season and those from 2014/15 season grouped differently. Multiple nucleotide and amino acid variations between different clusters of GII.17 were elucidated, including residue substitutions and insertion occurring in or near antigenic and receptor-binding sites of viral protein 1. In addition, sequence hypervariability from residue 279 through 406 of viral protein 2 was identified. The modifications may reveal a distinctive adaptive process which could in part explain the rapid spread of emerging GII.17 variants. Continued monitoring on novel GII.17 is essential.

Keyword(s): Evolution , Norovirus and Novel GII.17
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000363
2016-11-16
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/11/1274.html?itemId=/content/journal/jmm/10.1099/jmm.0.000363&mimeType=html&fmt=ahah

References

  1. Bull R. A., Eden J. S., Rawlinson W. D., White P. A..( 2010;). Rapid evolution of pandemic noroviruses of the GII.4 lineage. . PLoS Pathog 6: e1000831. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chan M. C., Lee N., Hung T. N., Kwok K., Cheung K., Tin E. K., Lai R. W., Nelson E. A., Leung T. F., Chan P. K..( 2015;). Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. . Nat Commun 6: 10061. [CrossRef] [PubMed]
    [Google Scholar]
  3. de Andrade J. S., Rocha M. S., Carvalho-Costa F. A., Fioretti J. M., Xavier M. P., Nunes Z. M., Cardoso J., Fialho A. M., Leite J. P., Miagostovich M. P..( 2014;). Noroviruses associated with outbreaks of acute gastroenteritis in the State of Rio Grande do Sul, Brazil, 2004–2011. . J Clin Virol 61: 345–352. [CrossRef] [PubMed]
    [Google Scholar]
  4. de Graaf M., van Beek J., Vennema H., Podkolzin A. T., Hewitt J., Bucardo F., Templeton K., Mans J., Nordgren J. et al.( 2015;). Emergence of a novel GII.17 norovirus – end of the GII.4 era?. Euro Surveill 20: 21178. [CrossRef] [PubMed]
    [Google Scholar]
  5. Donaldson E. F., Lindesmith L. C., Lobue A. D., Baric R. S..( 2008;). Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. . Immunol Rev 225: 190–211. [CrossRef] [PubMed]
    [Google Scholar]
  6. El Qazoui M., Oumzil H., Baassi L., El Omari N., Sadki K., Amzazi S., Benhafid M., El Aouad R..( 2014;). Rotavirus and norovirus infections among acute gastroenteritis children in Morocco. . BMC Infect Dis 14: 300. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fu J., Ai J., Jin M., Jiang C., Zhang J., Shi C., Lin Q., Yuan Z., Qi X. et al.( 2015;). Emergence of a new GII.17 norovirus variant in patients with acute gastroenteritis in Jiangsu, China, September 2014 to March 2015. . Euro Surveill 20: 21157. [CrossRef] [PubMed]
    [Google Scholar]
  8. Galeano M. E., Martinez M., Amarilla A. A., Russomando G., Miagostovich M. P., Parra G. I., Leite J. P..( 2013;). Molecular epidemiology of norovirus strains in Paraguayan children during 2004-2005: description of a possible new GII.4 cluster. . J Clin Virol 58: 378–384. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kiulia N. M., Mans J., Mwenda J. M., Taylor M. B..( 2014;). Norovirus GII.17 predominates in selected surface water sources in Kenya. . Food Environ Virol 6: 221–231. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kojima S., Kageyama T., Fukushi S., Hoshino F. B., Shinohara M., Uchida K., Natori K., Takeda N., Katayama K..( 2002;). Genogroup-specific PCR primers for detection of Norwalk-like viruses. . J Virol Methods 100: 107–114. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kroneman A., Vennema H., Deforche K., v d Avoort H., Peñaranda S., Oberste M. S., Vinjé J., Koopmans M..( 2011;). An automated genotyping tool for enteroviruses and noroviruses. . J Clin Virol 51: 121–125. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kroneman A., Vega E., Vennema H., Vinjé J., White P. A., Hansman G., Green K., Martella V., Katayama K., Koopmans M..( 2013;). Proposal for a unified norovirus nomenclature and genotyping. . Arch Virol 158: 2059–2068. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lee C. C., Feng Y., Chen S. Y., Tsai C. N., Lai M. W., Chiu C. H..( 2015;). Emerging norovirus GII.17 in Taiwan. . Clin Infect Dis 61: 1762–1764. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lu J., Sun L., Fang L., Yang F., Mo Y., Lao J., Zheng H., Tan X., Lin H. et al.( 2015;). Gastroenteritis outbreaks caused by norovirus GII.17, Guangdong Province, China, 2014–2015. . Emerg Infect Dis 21: 1240–1242. [CrossRef] [PubMed]
    [Google Scholar]
  15. Matsushima Y., Ishikawa M., Shimizu T., Komane A., Kasuo S., Shinohara M., Nagasawa K., Kimura H., Ryo A. et al.( 2015;). Genetic analyses of GII.17 norovirus strains in diarrheal disease outbreaks from December 2014 to March 2015 in Japan reveal a novel polymerase sequence and amino acid substitutions in the capsid region. . Euro Surveill 20: 21173. [CrossRef] [PubMed]
    [Google Scholar]
  16. Tan M., Jiang X..( 2005;). Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. . Trends Microbiol 13: 285–293. [CrossRef] [PubMed]
    [Google Scholar]
  17. Tan M., Farkas T., Jiang X..( 2009a;). Molecular pathogenesis of human norovirus. . In RNA Viruses, pp. 575–600. Edited by Yang D. C.. Danvers, MA:: Stallion Press;.[CrossRef]
    [Google Scholar]
  18. Tan M., Xia M., Chen Y., Bu W., Hegde R. S., Meller J., Li X., Jiang X..( 2009b;). Conservation of carbohydrate binding interfaces – evidence of human HBGA selection in norovirus evolution. . PLoS One 4: e5058. [CrossRef]
    [Google Scholar]
  19. Vongpunsawad S., Venkataram Prasad B. V., Estes M. K..( 2013;). Norwalk virus minor capsid protein VP2 associates within the VP1 shell domain. . J Virol 87: 4818–4825. [CrossRef] [PubMed]
    [Google Scholar]
  20. Wang X., Shi L. M., Zhang H. Y., Guo B. F., Xie G. X., Ding J..( 2014;). A molecular etiological analysis on the first detection of norovirus GII.4 Sydney variant in Nanjing. . Chinese J Med Lab Technol 24: 3501–3504.
    [Google Scholar]
  21. Wang X., Yong W., Shi L. M., Qiao M. K., He M., Zhang H. Y., Guo B. F., Xie G. X., Zhang M. et al.( 2016;). An outbreak of multiple norovirus strains on a cruise ship in China, 2014. . J Appl Microbiol 120: 226–233. [CrossRef] [PubMed]
    [Google Scholar]
  22. Zhang H. Y., Shi L. M., Li W., Wang X., Qiao M. K., He M., Wang Y., Xie G. X..( 2014;). Molecular epidemiology of genogroup II noroviruses infection in outpatients with acute gastroenteritis in Nanjing, China (2010-2013). . Biomed Res Int 2014: 620740. [CrossRef] [PubMed]
    [Google Scholar]
  23. Zhang X.-F., Huang Q., Long Y., Jiang X., Zhang T., Tan M., Zhang Q.-L., Huang Z.-Y., Li Y.-H. et al.( 2015;). An outbreak caused by GII.17 norovirus with a wide spectrum of HBGA-associated susceptibility. . Sci Rep 5: 17687. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000363
Loading
/content/journal/jmm/10.1099/jmm.0.000363
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error