1887

Abstract

Cariopathogen Streptococcus mutans exists in infected dental pulp of deciduous teeth and is frequently linked with heart diseases. Organotypic (3D) dental pulp stem cell (DPSC) cultures/microtissues, developed to mimic the physiological conditions in vivo, were utilized to assess the bacterial impact on their (i) 3D structural configuration and (ii) recovery mechanisms. The cultures, developed in extracellular matrix (ECM) bio-scaffold (Matrigel), interacted with WT and GFP-tagged bacterial biofilms by permitting their infiltration through the ECM. Challenged cell constructs were visualized by F-actin/nuclei staining. Their pluripotency (Sox2) and differentiation (osteocalcin) markers were assessed by immunocytochemistry. Secreted mineral was detected by alizarin red, and 3D structural arrangements were analysed by epi-fluorescence and confocal scanning microscopy. Bacterial biofilm/ECM-embedded DPSC interactions appeared in distinct areas of the microtissues. Bacterial attachment to the cell surface occurred without evidence of invasion. Surface architecture of the challenged versus unchallenged microtissues was apparently unaltered. However, significant increases in thickness (138.42 vs 106.51 µm) and bacterial penetration were detected in challenged structures causing canal-like microstructures with various diameters (12.94 –42.88 µm) and average diameter of 20.66 to 33.42 µm per microtissue. Challenged constructs expressed pluripotency and differentiation markers and secreted the mineral. Presented model shows strong potential for assessing pulp–pathogen interactions in vivo. S. mutans infiltrated and penetrated the microtissues but did not invade the cells or compromise major cell repair mechanisms. These findings would suggest reexamining the role of S. mutans as an endodontic pathogen and investigating DPSC resistance to its pathogenicity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000353
2016-11-16
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/11/1332.html?itemId=/content/journal/jmm/10.1099/jmm.0.000353&mimeType=html&fmt=ahah

References

  1. Abranches J., Zeng L., Bélanger M., Rodrigues P. H., Simpson-Haidaris P. J., Akin D., Dunn W. A., Progulske-Fox A., Burne R. A..( 2009;). Invasion of human coronary artery endothelial cells by Streptococcus mutans OMZ175. . Oral Microbiol Immunol 24: 141–145. [CrossRef] [PubMed]
    [Google Scholar]
  2. Abranches J., Miller J. H., Martinez A. R., Simpson-Haidaris P. J., Burne R. A., Lemos J. A..( 2011;). The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. . Infect Immun 79: 2277–2284. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. et al.( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. . Proc Natl Acad Sci U S A 99: 14434–14439. [CrossRef] [PubMed]
    [Google Scholar]
  4. Al-Okla S., Chatenay-Rivauday C., Klein J. P., Wachsmann D..( 1999;). Involvement of alpha5beta1 integrins in interleukin 8 production induced by oral viridans streptococcal protein I/IIf in cultured endothelial cells. . Cell Microbiol 1: 157–168. [CrossRef] [PubMed]
    [Google Scholar]
  5. Babu N. C., Gomes A. J..( 2011;). Systemic manifestations of oral diseases. . J Oral Maxillofac Pathol 15: 144–147. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bedran T. B., Azelmat J., Spolidorio D. P., Grenier D..( 2013;). Fibrinogen-induced Streptococcus mutans biofilm formation and adherence to endothelial cells. . Biomed Res Int 2013: 431–465.
    [Google Scholar]
  7. Berlutti F., Catizone A., Ricci G., Frioni A., Natalizi T., Valenti P., Polimeni A..( 2010;). Streptococcus mutans and Streptococcus sobrinus are able to adhere and invade human gingival fibroblast cell line. . Int J Immunopathol Pharmacol 23: 1253–1260.[PubMed]
    [Google Scholar]
  8. Bitoun J. P., Liao S., Yao X., Ahn S. J., Isoda R., Nguyen A. H., Brady L. J., Burne R. A., Abranches J., Wen Z. T..( 2012;). BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans. . Appl Environ Microbiol 78: 2914–2922. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chalmers N. I., Oh K., Hughes C. V., Pradhan N., Kanasi E., Ehrlich Y., Dewhirst F. E., Tanner A. C..( 2015;). Pulp and plaque microbiotas of children with severe early childhood caries. . J Oral Microbiol 7: 25951. [CrossRef] [PubMed]
    [Google Scholar]
  10. da Silva L. A., Nelson-Filho P., Faria G., de Souza-Gugelmin M. C., Ito I. Y..( 2006;). Bacterial profile in primary teeth with necrotic pulp and periapical lesions. . Braz Dent J 17: 144–148. [CrossRef] [PubMed]
    [Google Scholar]
  11. Damé-Teixeira N., Arthur R. A., Parolo C. C., Maltz M..( 2014;). Genotypic diversity and virulence traits of Streptococcus mutans isolated from carious dentin after partial caries removal and sealing. . Scientific World J 2014: 165201. [CrossRef] [PubMed]
    [Google Scholar]
  12. Davey M. E., O'toole G. A..( 2000;). Microbial biofilms: from ecology to molecular genetics. . Microbiol Mol Biol Rev 64: 847–867. [CrossRef] [PubMed]
    [Google Scholar]
  13. Farges J.-C., Alliot-Licht B., Renard E., Ducret M., Gaudin A., Smith A. J., Cooper P. R..( 2015a;). Dental pulp defence and repair mechanisms in dental caries. . Mediators Inflamm 2015: 1–16. [CrossRef]
    [Google Scholar]
  14. Farges J.-C., Bellanger A., Ducret M., Aubert-Foucher E., Richard B., Alliot-Licht B., Bleicher F., Carrouel F..( 2015b;). Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation. . Front Physiol 6: 185. [CrossRef]
    [Google Scholar]
  15. Gambino M., Cappitelli F..( 2016;). Mini-review: biofilm responses to oxidative stress. . Biofouling 32: 167–178. [CrossRef] [PubMed]
    [Google Scholar]
  16. Goldberg M., Njeh A., Uzunoglu E..( 2015;). Is pulp inflammation a prerequisite for pulp healing and regeneration?. Mediators Inflamm 2015: 347649. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hahn C. L., Best A. M., Tew J. G..( 2000;). Cytokine induction by Streptococcus mutans and pulpal pathogenesis. . Infect Immun 68: 6785–6789. [CrossRef] [PubMed]
    [Google Scholar]
  18. Han T. K., Zhang C., Dao M. L..( 2006;). Identification and characterization of collagen-binding activity in Streptococcus mutans wall-associated protein: a possible implication in dental root caries and endocarditis. . Biochem Biophys Res Commun 343: 787–792. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jackson R. J., Lim D. V., Dao M. L..( 1997;). Identification and analysis of a collagenolytic activity in Streptococcus mutans. . Curr Microbiol 34: 49–54. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jung C. J., Yeh C. Y., Shun C. T., Hsu R. B., Cheng H. W., Lin C. S., Chia J. S..( 2012;). Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. . J Infect Dis 205: 1066–1075. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kaufman G., Nunes L., Eftimiades A., Tutak W..( 2016;). Enhancing 3D structure of adherent gingival fibroblasts and spheroids via fibrous protein-based hydrogel cover. . Cells Tissues Organs doi:10.1159/000446821 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kleinman H. K., Martin G. R..( 2005;). Matrigel: basement membrane matrix with biological activity. . Semin Cancer Biol 15: 378–386. [CrossRef] [PubMed]
    [Google Scholar]
  23. Krzyściak W., Jurczak A., Kościelniak D., Bystrowska B., Skalniak A..( 2014;). The virulence of Streptococcus mutans and the ability to form biofilms. . Eur J Clin Microbiol Infect Dis 33: 499–515. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lee G. Y., Kenny P. A., Lee E. H., Bissell M. J..( 2007;). Three-dimensional culture models of normal and malignant breast epithelial cells. . Nat Methods 4: 359–365. [CrossRef] [PubMed]
    [Google Scholar]
  25. Li X., Kolltveit K. M., Tronstad L., Olsen I..( 2000;). Systemic diseases caused by oral infection. . Clin Microbiol Rev 13: 547–558. [CrossRef] [PubMed]
    [Google Scholar]
  26. Liu C., Worthington R. J., Melander C., Wu H..( 2011;). A new small molecule specifically inhibits the cariogenic bacterium Streptococcus mutans in multispecies biofilms. . Antimicrob Agents Chemother 55: 2679–2687. [CrossRef] [PubMed]
    [Google Scholar]
  27. Love R. M., Jenkinson H. F..( 2002;). Invasion of dentinal tubules by oral bacteria. . Crit Rev Oral Biol Med 13: 171–183.[PubMed] [CrossRef]
    [Google Scholar]
  28. Love R. M., McMillan M. D., Jenkinson H. F..( 1997;). Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. . Infect Immun 65: 5157–5164.[PubMed]
    [Google Scholar]
  29. Ma M., Baumgartner M..( 2013;). Filopodia and membrane blebs drive efficient matrix invasion of macrophages transformed by the intracellular parasite Theileria annulata. . PLoS One 8: e75577. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mattila K. J., Valle M. S., Nieminen M. S., Valtonen V. V., Hietaniemi K. L..( 1993;). Dental infections and coronary atherosclerosis. . Atherosclerosis 103: 205–211. [CrossRef] [PubMed]
    [Google Scholar]
  31. Miller-Torbert T. A., Sharma S., Holt R. G..( 2008;). Inactivation of a gene for a fibronectin-binding protein of the oral bacterium Streptococcus mutans partially impairs its adherence to fibronectin. . Microb Pathog 45: 53–59. [CrossRef] [PubMed]
    [Google Scholar]
  32. Nakano K., Fujita K., Nishimura K., Nomura R., Ooshima T..( 2005;). Contribution of biofilm regulatory protein A of Streptococcus mutans, to systemic virulence. . Microbes Infect 7: 1246–1255. [CrossRef] [PubMed]
    [Google Scholar]
  33. Nobbs A. H., Lamont R. J., Jenkinson H. F..( 2009;). Streptococcus adherence and colonization. . Microbiol Mol Biol Rev 73: 407–450. [CrossRef] [PubMed]
    [Google Scholar]
  34. Nomura R., Ogaya Y., Nakano K..( 2016;). Contribution of the collagen-binding proteins of Streptococcus mutans to bacterial colonization of inflamed dental pulp. . PLoS One 11: 1–13. [CrossRef] [PubMed]
    [Google Scholar]
  35. Petersen P. E..( 2003;). The World Oral Health Report 2003: continuous improvement of oral health in the 21st century – the approach of the WHO Global Oral Health Programme. . Community Dent Oral Epidemiol 31: 3–23.[PubMed] [CrossRef]
    [Google Scholar]
  36. Rôças I. N., Lima K. C., Assunção I. V., Gomes P. N., Bracks I. V., Siqueira J. F..( 2015;). Advanced caries microbiota in teeth with irreversible pulpitis. . J Endod 41: 1450–1455. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ronay V., Belibasakis G. N., Attin T., Schmidlin P. R., Bostanci N..( 2014;). Expression of embryonic stem cell markers and osteogenic differentiation potential in cells derived from periodontal granulation tissue. . Cell Biol Int 38: 179–186. [CrossRef] [PubMed]
    [Google Scholar]
  38. Schlaermann P., Toelle B., Berger H., Schmidt S. C., Glanemann M., Ordemann J., Bartfeld S., Mollenkopf H. J., Meyer T. F..( 2016;). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. . Gut 65: 202–213. [CrossRef] [PubMed]
    [Google Scholar]
  39. Song W., Shi Y., Xiao M., Lu H., Qu T., Li P., Wu G., Tian Y..( 2009;). In vitro bactericidal activity of recombinant human beta-defensin-3 against pathogenic bacterial strains in human tooth root canal. . Int J Antimicrob Agents 33: 237–243. [CrossRef] [PubMed]
    [Google Scholar]
  40. Vernier A., Diab M., Soell M., Haan-Archipoff G., Beretz A., Wachsmann D., Klein J. P..( 1996;). Cytokine production by human epithelial and endothelial cells following exposure to oral viridans streptococci involves lectin interactions between bacteria and cell surface receptors. . Infect Immun 64: 3016–3022.[PubMed]
    [Google Scholar]
  41. Wang F., Wu L. A., Li W., Yang Y., Guo F., Gao Q., Chuang H. H., Shoff L., Wang W. et al.( 2013;). Immortalized mouse dental papilla mesenchymal cells preserve odontoblastic phenotype and respond to bone morphogenetic protein 2. . In Vitro Cell Dev Biol Anim 49: 626–637. [CrossRef] [PubMed]
    [Google Scholar]
  42. Wen Z. T., Baker H. V., Burne R. A..( 2006;). Influence of BrpA on critical virulence attributes of Streptococcus mutans. . J Bacteriol 188: 2983–2992. [CrossRef] [PubMed]
    [Google Scholar]
  43. Westerlund B., Korhonen T. K..( 1993;). Bacterial proteins binding to the mammalian extracellular matrix. . Mol Microbiol 9: 687–694. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zhang W., Yelick P. C..( 2010;). Vital pulp therapy – current progress of dental pulp regeneration and revascularization. . Int J Dent 2010: 856087. [CrossRef] [PubMed]
    [Google Scholar]
  45. Zijnge V., van Leeuwen M. B., Degener J. E., Abbas F., Thurnheer T., Gmür R., Harmsen H. J..( 2010;). Oral biofilm architecture on natural teeth. . PLoS One 5: e9321. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000353
Loading
/content/journal/jmm/10.1099/jmm.0.000353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error