1887

Abstract

Mycobacterium avium subsp. hominissuis (MAH) causes disease in both humans and swine; however, the genetic variations in MAH isolates are unclear. The aim of this study was to elucidate the genetic variations in MAH isolates from humans and swine in Japan. We analysed the 16S–23S rDNA internal transcribed spacer (ITS) sequence and variable number of tandem repeats (VNTRs) using the Mycobacterium avium tandem repeat loci, prevalence of ISMav6 and clarithromycin resistance for MAH isolates from patients with pulmonary MAC (pMAC) disease (n=69), and HIV-seropositive and blood culture-positive (HIV-MAC) patients (n=28) and swine (n=23). In the minimum spanning tree based on VNTR analysis, swine MAC isolates belonged to a cluster distinguishable from that of human pMAC isolates. Isolates from HIV-MAC were scattered throughout both clusters. The three major distinct sequevars, Mav-A, Mav-B and Mav-F, were determined according to 16S–23S rDNA ITS sequence analysis in addition to three new sequevars, Mav-Q, Mav-R and Mav-S. Mav-A and Mav-F comprised the majority of human pMAC strains; in contrast, Mav-B predominated in swine isolates. Distribution of ITS sequevars in the minimum spanning tree based on VNTR analysis showed similar clusters of isolates from different origins, i.e. human pMAC, HIV-MAC and swine. These results, together with ISMav6 possession and clarithromycin resistance, revealed the genetic diversity of MAH strains recovered from humans and swine. Molecular epidemiology and genetic characterization in the present study showed the distinctive genetic evolutionary lineage of MAH strains isolated from human pMAC diseases and swine.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000351
2016-11-16
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/11/1289.html?itemId=/content/journal/jmm/10.1099/jmm.0.000351&mimeType=html&fmt=ahah

References

  1. Biet F., Boschiroli M. L., Thorel M. F., Guilloteau L. A..( 2005;). Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC). . Vet Res 36: 411–436. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bono M., Jemmi T., Bernasconi C., Burki D., Telenti A., Bodmer T..( 1995;). Genotypic characterization of Mycobacterium avium strains recovered from animals and their comparison to human strains. . Appl Environ Microbiol 61: 371–373.[PubMed]
    [Google Scholar]
  3. De Smet K. A., Brown I. N., Yates M., Ivanyi J..( 1995;). Ribosomal internal transcribed spacer sequences are identical among Mycobacterium avium-intracellulare complex isolates from AIDS patients, but vary among isolates from elderly pulmonary disease patients. . Microbiology 141: 2739–2747. [CrossRef] [PubMed]
    [Google Scholar]
  4. Falkinham J. O..( 2015;). Environmental sources of nontuberculous mycobacteria. . Clin Chest Med 36: 35–41. [CrossRef] [PubMed]
    [Google Scholar]
  5. Frothingham R., Wilson K. H..( 1993;). Sequence-based differentiation of strains in the Mycobacterium avium complex. . J Bacteriol 175: 2818–2825.[PubMed] [CrossRef]
    [Google Scholar]
  6. Frothingham R., Wilson K. H..( 1994;). Molecular phylogeny of the Mycobacterium avium complex demonstrates clinically meaningful divisions. . J Infect Dis 169: 305–312. [CrossRef] [PubMed]
    [Google Scholar]
  7. Griffith D. E., Aksamit T., Brown-Elliott B. A., Catanzaro A., Daley C., Gordin F., Holland S. M., Horsburgh R., Huitt G. et al.( 2007;). An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. . Am J Respir Crit Care Med 175: 367–416. [CrossRef] [PubMed]
    [Google Scholar]
  8. Guerrero C., Bernasconi C., Burki D., Bodmer T., Telenti A..( 1995;). A novel insertion element from Mycobacterium avium, IS1245, is a specific target for analysis of strain relatedness. . J Clin Microbiol 33: 304–307.[PubMed]
    [Google Scholar]
  9. Iakhiaeva E., Howard S. T., Brown Elliott B. A., McNulty S., Newman K. L., Falkinham J. O, Williams M., Kwait R., Lande L. et al.( 2016;). Variable-number tandem-repeat analysis of respiratory and household water biofilm isolates of ‘Mycobacterium avium subsp. hominissuis’ with establishment of a PCR database. . J Clin Microbiol 54: 891–901. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ichikawa K., Yagi T., Moriyama M., Inagaki T., Nakagawa T., Uchiya K., Nikai T., Ogawa K..( 2009;). Characterization of Mycobacterium avium clinical isolates in Japan using subspecies-specific insertion sequences, and identification of a new insertion sequence, ISMav6. . J Med Microbiol 58: 945–950. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ichikawa K., Yagi T., Inagaki T., Moriyama M., Nakagawa T., Uchiya K., Nikai T., Ogawa K..( 2010;). Molecular typing of Mycobacterium intracellulare using multilocus variable-number of tandem-repeat analysis: identification of loci and analysis of clinical isolates. . Microbiology 156: 496–504. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ichikawa K., van Ingen J., Koh W. J., Wagner D., Salfinger M., Inagaki T., Uchiya K., Nakagawa T., Ogawa K. et al.( 2015;). Genetic diversity of clinical Mycobacterium avium subsp. hominissuis and Mycobacterium intracellulare isolates causing pulmonary diseases recovered from different geographical regions. . Infect Genet Evol 36: 250–255. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ide S., Nakamura S., Yamamoto Y., Kohno Y., Fukuda Y., Ikeda H., Sasaki E., Yanagihara K., Higashiyama Y. et al.( 2015;). Epidemiology and clinical features of pulmonary nontuberculous mycobacteriosis in Nagasaki, Japan. . PLoS One 10: e0128304. [CrossRef] [PubMed]
    [Google Scholar]
  14. Inagaki T., Nishimori K., Yagi T., Ichikawa K., Moriyama M., Nakagawa T., Shibayama T., Uchiya K., Nikai T., Ogawa K..( 2009;). Comparison of a variable-number tandem-repeat (VNTR) method for typing Mycobacterium avium with mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing. . J Clin Microbiol 47: 2156–2164. [CrossRef] [PubMed]
    [Google Scholar]
  15. Iwamoto T., Nakajima C., Nishiuchi Y., Kato T., Yoshida S., Nakanishi N., Tamaru A., Tamura Y., Suzuki Y., Nasu M..( 2012;). Genetic diversity of Mycobacterium avium subsp. hominissuis strains isolated from humans, pigs, and human living environment. . Infect Genet Evol 12: 846–852. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim S. Y., Jeong B. H., Park H. Y., Jeon K., Han S. J., Shin S. J., Koh W. J..( 2016;). Association of ISMav6 with the pattern of antibiotic resistance in Korean Mycobacterium avium clinical isolates but no relevance between their genotypes and clinical features. . PLoS One 11: e0148917. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lari N., Cavallini M., Rindi L., Iona E., Fattorini L., Garzelli C..( 1998;). Typing of human Mycobacterium avium isolates in Italy by IS1245-based restriction fragment length polymorphism analysis. . J Clin Microbiol 36: 3694–3697.[PubMed]
    [Google Scholar]
  18. Mijs W., De Vreese K., Devos A., Pottel H., Valgaeren A., Evans C., Norton J., Parker D., Rigouts L. et al.( 2002;). Evaluation of a commercial line probe assay for identification of mycobacterium species from liquid and solid culture. . Eur J Clin Microbiol Infect Dis 21: 794–802. [CrossRef] [PubMed]
    [Google Scholar]
  19. Murcia M. I., Tortoli E., Menendez M. C., Palenque E., Garcia M. J..( 2006;). Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. . Int J Syst Evol Microbiol 56: 2049–2054. [CrossRef] [PubMed]
    [Google Scholar]
  20. Novi C., Rindi L., Lari N., Garzelli C..( 2000;). Molecular typing of Mycobacterium avium isolates by sequencing of the 16S-23S rDNA internal transcribed spacer and comparison with IS1245-based fingerprinting. . J Med Microbiol 49: 1091–1095. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ritacco V., Kremer K., van der Laan T., Pijnenburg J. E., de Haas P. E., van Soolingen D..( 1998;). Use of IS901 and IS1245 in RFLP typing of Mycobacterium avium complex: relatedness among serovar reference strains, human and animal isolates. . Int J Tuberc Lung Dis 2: 242–251.[PubMed]
    [Google Scholar]
  22. Stout J. E., Hopkins G. W., McDonald J. R., Quinn A., Hamilton C. D., Reller L. B., Frothingham R..( 2008;). Association between 16S-23S internal transcribed spacer sequence groups of Mycobacterium avium complex and pulmonary disease. . J Clin Microbiol 46: 2790–2793. [CrossRef] [PubMed]
    [Google Scholar]
  23. Turenne C. Y., Semret M., Cousins D. V., Collins D. M., Behr M. A..( 2006;). Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex. . J Clin Microbiol 44: 433–440. [CrossRef] [PubMed]
    [Google Scholar]
  24. Turenne C. Y., Wallace R., Behr M. A..( 2007;). Mycobacterium avium in the postgenomic era. . Clin Microbiol Rev 20: 205–229. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000351
Loading
/content/journal/jmm/10.1099/jmm.0.000351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error