1887

Abstract

Vibrio cholerae causes cholera outbreaks in endemic regions where the water quality and sanitation facilities remain poor. Apart from biotype and serotype changes, V. cholerae undergoes phase variation, which results in the generation of two morphologically different variants termed smooth and rugose. In this study, 12 rugose (R-VC) and 6 smooth (S-VC) V. cholerae O1 Ogawa isolates were identified in a cholera outbreak that occurred in Hyderabad, India. Antimicrobial susceptibility results showed that all the isolates were resistant to ampicillin, furazolidone and nalidixic acid. In addition, R-VC isolates were resistant to ciprofloxacin (92 %), streptomycin (92 %), erythromycin (83 %), trimethoprim-sulfamethoxazole (75 %) and tetracycline (75 %). Based on the ctxB gene analysis, all the isolates were identified as El Tor variant with mutation in two positions of ctxB, similar to the classical biotype. The R-VC isolates specifically showed excessive biofilm formation and were comparatively less motile. In addition, the majority of these isolates (~83 %) displayed random mutations in the hapR gene, which encodes haemagglutinin protease regulatory protein. In the PFGE analysis, R-VC and S-VC were placed in distinct clusters but remained clonally related. In the ribotyping analysis, all the R-VC isolates exhibited R-III pattern, which is a prevailing type among the current El Tor isolates. A hapR deletion mutant generated using an S-VC isolate expressed rugose phenotype. To our knowledge, this is the first report on the association of rugose V. cholerae O1 in a large cholera outbreak with extended antimicrobial resistance and random mutations in the haemagglutinin protease regulatory protein encoding gene (hapR).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000344
2016-10-18
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1130.html?itemId=/content/journal/jmm/10.1099/jmm.0.000344&mimeType=html&fmt=ahah

References

  1. Ali A., Mahmud Z. H., Morris J. G., Sozhamannan S., Johnson J. A..( 2000;). Sequence analysis of TnphoA insertion sites in Vibrio cholerae mutants defective in rugose polysaccharide production. . Infect Immun68:6857–6864. [CrossRef][PubMed]
    [Google Scholar]
  2. Beyhan S., Bilecen K., Salama S. R., Casper-Lindley C., Yildiz F. H..( 2007;). Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. . J Bacteriol189:388–402. [CrossRef][PubMed]
    [Google Scholar]
  3. CLSI( 2010;). Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement M100-S20. Wayne, PA:: Clinical Laboratory Standards Institute;.
    [Google Scholar]
  4. Cooper K. L., Luey C. K., Bird M., Terajima J., Nair G. B., Kam K. M., Arakawa E., Safa A., Cheung D. T. et al.( 2006;). Development and validation of a PulseNet standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio cholerae. . Foodborne Pathog Dis3:51–58. [CrossRef][PubMed]
    [Google Scholar]
  5. Dutta B., Ghosh R., Sharma N. C., Pazhani G. P., Taneja N., Raychowdhuri A., Sarkar B. L., Mondal S. K., Mukhopadhyay A. K. et al.( 2006;). Spread of cholera with newer clones of Vibrio cholerae O1 El Tor, serotype Inaba, in India. . J Clin Microbiol44:3391–3339. [CrossRef][PubMed]
    [Google Scholar]
  6. Faruque A. S., Alam K., Malek M. A., Khan M. G., Ahmed S., Saha D., Khan W. A., Nair G. B., Salam M. A. et al.( 2007;). Emergence of multidrug-resistant strain of Vibrio cholerae O1 in Bangladesh and reversal of their susceptibility to tetracycline after two years. . J Health Popul Nutr25:241–243.[PubMed]
    [Google Scholar]
  7. Faruque S. M., Albert M. J., Mekalanos J. J..( 1998;). Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. . Microbiol Mol Biol Rev62:1301–1314.[PubMed]
    [Google Scholar]
  8. Faruque S. M., Chowdhury N., Kamruzzaman M., Dziejman M., Rahman M. H., Sack D. A., Nair G. B., Mekalanos J. J..( 2004;). Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. . Proc Natl Acad Sci U S A101:2123–2128. [CrossRef][PubMed]
    [Google Scholar]
  9. Garg P., Sinha S., Chakraborty R., Bhattacharya S. K., Nair G. B., Ramamurthy T., Takeda Y..( 2001;). Emergence of fluoroquinolone-resistant strains of Vibrio cholerae O1 biotype El Tor among hospitalized patients with cholera in Calcutta, India. . Antimicrob Agents Chemother45:1605–1606. [CrossRef][PubMed]
    [Google Scholar]
  10. Islam M. S., Jahid M. I., Rahman M. M., Rahman M. Z., Islam M. S., Kabir M. S., Sack D. A., Schoolnik G. K..( 2007;). Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh. . Microbiol Immunol51:369–379. [CrossRef][PubMed]
    [Google Scholar]
  11. Lauriano C. M., Ghosh C., Correa N. E., Klose K. E..( 2004;). The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. . J Bacteriol186:4864–4874. [CrossRef][PubMed]
    [Google Scholar]
  12. Liang W., Silva A. J., Benitez J. A..( 2007;). The cyclic AMP receptor protein modulates colonial morphology in Vibrio cholerae. . Appl Environ Microbiol73:7482–7487. [CrossRef][PubMed]
    [Google Scholar]
  13. Lim B., Beyhan S., Meir J., Yildiz F. H..( 2006;). Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. . Mol Microbiol60:331–348. [CrossRef][PubMed]
    [Google Scholar]
  14. Lipp E. K., Huq A., Colwell R. R..( 2002;). Effects of global climate on infectious disease: the cholera model. . Clin Microbiol Rev15:757–770. [CrossRef][PubMed]
    [Google Scholar]
  15. Mizunoe Y., Wai S. N., Takade A., Yoshida S. I..( 1999;). Isolation and characterization of rugose form of Vibrio cholerae O139 strain MO10. . Infect Immun67:958–963.[PubMed]
    [Google Scholar]
  16. Morita M., Ohnishi M., Arakawa E., Bhuiyan N. A., Nusrin S., Alam M., Siddique A. K., Qadri F., Izumiya H. et al.( 2008;). Development and validation of a mismatch amplification mutation PCR assay to monitor the dissemination of an emerging variant of Vibrio cholerae O1 biotype El Tor. . Microbiol Immunol52:314–317. [CrossRef][PubMed]
    [Google Scholar]
  17. Morris J. G., Sztein M. B., Rice E. W., Nataro J. P., Losonsky G. A., Panigrahi P., Tacket C. O., Johnson J. A..( 1996;). Vibrio cholerae O1 can assume a chlorine-resistant rugose survival form that is virulent for humans. . J Infect Dis174:1364–1368. [CrossRef][PubMed]
    [Google Scholar]
  18. Nair G. B., Qadri F., Holmgren J., Svennerholm A. M., Safa A., Bhuiyan N. A., Ahmad Q. S., Faruque S. M., Faruque A. S. et al.( 2006;). Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. . J Clin Microbiol44:4211–4213. [CrossRef][PubMed]
    [Google Scholar]
  19. Pal R. R., Bag S., Dasgupta S., Bhadra R. K..( 2012;). Functional characterization of the stringent response regulatory gene dksA of Vibrio cholerae and its role in modulation of virulence phenotypes. . J Bacteriol194:5638–5648. [CrossRef][PubMed]
    [Google Scholar]
  20. Pant A., Anbumani D., Bag S., Mehta O., Kumar P., Saxena S., Nair G. B., Das B..( 2015;). Effect of LexA on chromosomal integration of CTXϕ in Vibrio cholerae. . J Bacteriol198:268–275. [CrossRef]
    [Google Scholar]
  21. Popovic T., Bopp C., Olsvik O., Wachsmuth K..( 1993;). Epidemiologic application of a standardized ribotype scheme for Vibrio cholerae O1. . J Clin Microbiol31:2474–2482.[PubMed]
    [Google Scholar]
  22. Rashid M. H., Rajanna C., Ali A., Karaolis D. K..( 2003;). Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. . FEMS Microbiol Lett227:113–119. [CrossRef][PubMed]
    [Google Scholar]
  23. Rashid M. H., Rajanna C., Zhang D., Pasquale V., Magder L. S., Ali A., Dumontet S., Karaolis D. K..( 2004;). Role of exopolysaccharide, the rugose phenotype and VpsR in the pathogenesis of epidemic Vibrio cholerae. . FEMS Microbiol Lett230:105–113. [CrossRef][PubMed]
    [Google Scholar]
  24. Ray V. A., Morris A. R., Visick K. L..( 2012;). A semi-quantitative approach to assess biofilm formation using wrinkled colony development. . J Vis Exp64:,e4035. [CrossRef][PubMed]
    [Google Scholar]
  25. Raychoudhuri A., Mukhopadhyay A. K., Ramamurthy T., Nandy R. K., Takeda Y., Nair G. B..( 2008;). Biotyping of Vibrio cholerae O1: time to redefine the scheme. . Indian J Med Res128:695–698.[PubMed]
    [Google Scholar]
  26. Rice E. W., Johnson C. J., Clark R. M., Fox K. R., Reasoner D. J., Dunnigan M. E., Panigrahi P., Johnson J. A., Morris J. G..( 1992;). Chlorine and survival of ‘rugose’ Vibrio cholerae. . Lancet340:740. [CrossRef][PubMed]
    [Google Scholar]
  27. Rice E. W., Johnson C. H., Clark R. M., Fox K. R., Reasoner D. J., Dunnigan M. E., Panigrahi P., Johnson J. A., Morris J. G..,Jr( 1993;). Vibrio cholerae O1 can assume a ‘rugose’ survival form that resists killing by chlorine, yet retains virulence. . Int J Environ Health Res3:89–98. [CrossRef]
    [Google Scholar]
  28. Sack D. A., Sack R. B., Nair G. B., Siddique A. K..( 2004;). Cholera. . Lancet363:223–233. [CrossRef][PubMed]
    [Google Scholar]
  29. Taneja N., Sangar G., Chowdhury G., Ramamurthy T., Mishra A., Singh M., Sharma M..( 2012;). Molecular epidemiology of Vibrio cholerae causing outbreaks & sporadic cholera in northern India. . Indian J Med Res136:656–663.[PubMed]
    [Google Scholar]
  30. Wallace C. K., Anderson P. N., Brown T. C., Khanra S. R., Lewis G. W., Pierce N. F., Sanyal S. N., Segre G. V., Waldman R. H..( 1968;). Optimal antibiotic therapy in cholera. . Bull World Health Organ39:239–245.[PubMed]
    [Google Scholar]
  31. White P. B..( 1938;). The rugose variant of vibrios. . J Pathol Bacteriol46:1–6. [CrossRef]
    [Google Scholar]
  32. WHO( 1983;). Manual for Laboratory Identification of Acute Enteric Infectios. Geneva:: World Health Organization;. WHO/CDD/83.3.
    [Google Scholar]
  33. WHO( 2015;). Cholera annual report 2014. . Wkly Epidemiol Rec90:517–544.
    [Google Scholar]
  34. Yildiz F. H., Schoolnik G. K..( 1999;). Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. . Proc Natl Acad Sci U S A96:4028–4033. [CrossRef][PubMed]
    [Google Scholar]
  35. Yildiz F. H., Liu X. S., Heydorn A., Schoolnik G. K..( 2004;). Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. . Mol Microbiol53:497–515. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000344
Loading
/content/journal/jmm/10.1099/jmm.0.000344
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error